Chemosphere 67 (2007) 1072–1079
www.elsevier.com/locate/chemosphere
Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh
M. Azizur Rahman a,*, H. Hasegawa a, M. Mahfuzur Rahman b, M. Nazrul Islam b, M.A. Majid Miah c, A. Tasmen d
a Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
b Department of Botany, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
c Bangladesh Rice Research Institute (BRRI), Division of Soil Science, Gazipur, Bangladesh
d Institute of Education and Research (IER), University of Dhaka, Dhaka, Bangladesh
Received 8 June 2006; received in revised form 17 November 2006; accepted 24 November 2006
Available online 19 January 2007
Abstract
A glass house experiment was conducted to investigate the effect of soil arsenic on photosynthetic pigments, chlorophyll-a and -b, and their correlations with rice yield and growth. The experiment was designed with three replications of six arsenic treatments viz. control, 10,
20, 30, 60, 90 mg of As kg 1 soil. Arsenic concentration in initial soil, to which the above mentioned concentrations of arsenic were added,
was 6.44 plusmn; 0.24 mg kg 1. Both chlorophyll-a and -b contents in rice leaf decreased significantly (p lt; 0.05) with the increase of soil arsenic concentrations. No rice plant survived up to maturity stage in soil treated with 60 and 90 mg of As kg 1. The highest chlorophyll-a and -b contents were observed in control treatment (2.62 plusmn; 0.24 and 2.07 plusmn; 0.14 mg g 1 were the average values of chlorophyll-a and -b, respec- tively of the five rice varieties) while 1.50 plusmn; 0.20 and 1.04 plusmn; 0.08 mg g 1 (average of five rice varieties) of chlorophyll-a and -b, respectively
were the lowest. The content of photosynthetic pigments in these five rice varieties did not differ significantly (p gt; 0.05) from each other in control treatment though they differed significantly (p lt; 0.05) from each other in 30 mg of As kg 1 soil treatment. Among the five rice varieties, chlorophyll content in BRRI dhan 35 was found to be mostly affected with the increase of soil arsenic concentration while BRRI hybrid dhan 1 was least affected. Well correlations were observed between chlorophyll content and rice growth and yield suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of rice growth and yield.
2006 Elsevier Ltd. All rights reserved.
Keywords: Arsenic; Rice; Photosynthesis; Chlorophyll; Growth; Yield
1. Introduction
Arsenic is one of the toxic environmental pollutants which has recently attracted attention because of its chronic and epidemic effects on human health through widespread water and crop contamination due to the natu- ral release of this toxic element from aquifer rocks in Ban- gladesh (Ahmed, 2000; Smith et al., 2000; Fazal et al.,
2001; Hopenhayn, 2006), West Bengal, India (Chakraborti
* Corresponding author. Tel./fax: 81 76 234 4792.
E-mail addresses: rahmanmazizur@gmail.com, aziz_ju@yahoo.com
(M. Azizur Rahman).
and Das, 1997; Banerjee, 2000). Geogenic contamination of arsenic in aquifer rocks has also been reported in Thai- land (Visoottiviseth et al., 2002), Vietnam, Inner Mongolia, Greece, Hungary, USA, Ghana, Chile, Argentina and Mexico (Orsquo;Neill, 1995; Smedley and Kinniburgh, 2002).
Bangladesh is one of the major rice growing countries. The people of Bangladesh not only drink the arsenic contaminated groundwater but also irrigate their crops. About 33% of the total arable land of the country is under irrigation (BBS, 1996). Irrigation is principally performed in dry seasons for Boro rice cultivation. In Bangladesh, a large number of shallow tubewells (STWs) and deep tube- wells (DTWs) have been installed to irrigate about 4.3
0045-6535/$ - see front matter 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.chemosphere.2006.11.061
Table 1
Environmental conditions of the experimental area during the experimenta
lt;
剩余内容已隐藏,支付完成后下载完整资料
毕业论文
英文翻译
原文标题 Eect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh
译文标题 砷对孟加拉国五种广泛栽培水稻光合作用、生长 和产量的影响
砷对孟加拉国五种广泛栽培水稻光合作用、生长和产量的影响
M.Azizur Rahman a,*, H. Hasegawa a,
M. Mahfuzur Rahman b, M. Nazrul Islam b,
M.A. Majid Miah c, A. Tasmen d
a Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
b Department of Botany, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
c Bangladesh Rice Research Institute (BRRI), Division of Soil Science, Gazipur, Bangladesh
d Institute of Education and Research (IER), University of Dhaka, Dhaka, Bangladesh
Received 8 June 2006; received in revised form 17 November 2006; accepted 24 November 2006,Available online 19 January 2007
摘要
通过温室试验, 研究了土壤砷对光合色素、叶绿素a 和叶绿素b 的影响及其与水稻产量和生长的关系。本实验采用了六种砷处理, 即控制, 10, 20, 30, 60, 90 mg/kg 浓度梯度的土壤砷污染。在添加上述砷浓度之前的初始土壤砷浓度为 6.44plusmn;0.24 mg/ kg 。随着土壤砷浓度的增加, 水稻叶片中叶绿素a 和叶绿素b 含量均显著下降 (p lt; 0.05)。在60和90mg/kg砷处理的土壤中, 没有水稻植株存活到成熟期。对照处理中观察到叶绿素a 和叶绿素b含量最高 (5个水稻品种的叶绿素a 和叶绿素b 的平均值分别为2.62plusmn;0.24 和 2.07plusmn;0.14 mg/g,), 叶绿素 a 和叶绿b 的最低含量分别1.50plusmn;0.20 和1.04plusmn;0.08mg/kg。这五个水稻品种的光合色素含量在对照处理中无显著差异 (p gt; 0.05),但在30mg/kg 土壤砷处理中存在显著差异 (p lt; 0.05)。在5个水稻品种中,随着土壤砷浓度的增加, BRRI dhan 35 中的叶绿素含量受影响最大, 而 BRRI 杂交种 dhan 1号受影响最小。叶绿素含量与水稻生长和产量的相关性研究表明, 砷毒性影响光合作用, 最终导致水稻生长和产量的下降。
关键词: 砷;大米;光合作用;叶绿素;增长; 产量
1.导言
砷是最近引起关注的有毒环境污染物之一, 因为这种从班格拉德斯、西孟加拉邦、印度(Chakrabortiand Das,1997;Banerjee, 2000)的含水层岩石自然释放的有毒元素通过对水质和作物造成污染,从而对人类健康造成了长期和流行病的影响,(Ahmed, 2000; Smith et al., 2000; Fazal et al.,2001; Hopenhayn, 2006)。在泰国(Visoottiviseth et al., 2002)、越南、内蒙古、希腊、匈牙利、美国、加纳、智利、阿根廷和墨西哥 (Orsquo;Neill, 1995; Smedley and Kinniburgh, 2002), 也报告了含水层岩石中砷的地质污染。
孟加拉国是主要的水稻种植国之一。孟加拉国人民不仅喝砷污染的地下水, 而且也用于灌溉他们的作物。全国约33% 的耕地正在被如此灌溉 (bbs, 1996)。灌溉主要在旱季进行, 用于Boro水稻种植。 在孟加拉国, 安装了大量浅管井(STWs)和深管井(DYWs), 用于灌溉约4.3 百万公里作物土地, 这对国家粮食生产作出了重大贡献 (Rashid, 2004)。长期灌溉砷污染的地下水可能会增加其在作物中的浓度 (Ullah,1998; Imamul Huq et al., 2003)。孟加拉国不受砷污染地区的农业土壤为4.0 -8.0 mg/kg砷, 而受砷污染地下水灌溉的土壤中,含有高达83mg/kg砷
(ullah, 1998)。农业土壤中砷的最大可接受浓度为20mg/ kg。(Kabata-Pendias and Pendias, 1992) 在浓度较高的情况下, 砷对大多数植物都是有毒的。它干扰代谢过程, 通过砷引起的植物毒性抑制植物生长和发育(Marin et al., 1993)。当植物在土壤或溶液培养中接触过量砷时, 它们会出现中毒症状, 如抑制种子细菌性(Abedin and Meharg,2002a); 植物高度下降(Marin et al., 1992; Carbonell-Barrachina et al.1995; Abedin et al., 2002b; Jahan et al., 2003);分枝减少(Kang et al., 19Rahman et al., 2004);根系生长减少(Abedin and Meharg, 2002a);射芽增长下降(Cox et al.,1996);果实和谷物产量较低(Carbonell-Barrachina et al., 1995; Kang et al.,1996; Abedin et al., 2002b);有时, 导致死亡 (Baker et al., 1976; Marin et al., 1992)。光合作用是植物生化系统的基础,然而, 人们对砷对光合作用的影响却了解甚少。 由于上述几乎所有的砷对生理和农业参数的不利影响都与植物的基本光化学反应、光合作用有关, 因此, 测量叶绿素 a、叶绿素b、光合色素,在水稻叶片中的含量是很重要的,以此证明它们与水稻生长和产量的相关性。本研究旨在评价土壤砷浓度对孟加拉国五种流行和广泛栽培的Boro水稻(Oryza sativa L.)的叶绿素含量、生长和产量的影响。
Table 1
Environmental conditions of the experimental area during the experimenta
Month Temperature ( C) Relative humidity (%) |
Average evaporation |
Sunshine |
Solar radiation |
Total rainfall |
|||||
Max. |
Min. |
8:00 AM |
2:00 PM |
(mm) |
(h d 1) |
(cal cm 2) |
(mm) |
||
January rsquo;04 |
24.00 |
12.70 |
80.50 |
53.10 |
2.00 |
5.90 |
261.60 |
8.00 |
|
February rsquo;04 |
28.50 |
14.40 |
72.10 |
40.70 |
2.7 |
8.30 |
373.50 |
0.00 |
|
March rsquo;04 |
32.80 |
21.60 |
75.30 |
44.90 |
4.60 |
7.60 |
403.60 |
7.40 |
|
April rsquo;04 |
32.40 |
23.50 |
78.90 |
55.90 |
4.10 |
6.10 |
376.40 |
137.40 |
|
May rsquo;04 |
33.20 |
26.00 |
73.80 |
56.30 |
5.50 |
7.50 |
429.90 |
949.40 |
Month Temperature ( C) Relative humidity (%) |
Average evaporation |
Sunshine |
Solar radiation |
Total rainfall |
|||||
Max. |
Min. |
8:00 AM |
2:00 PM |
(mm) |
(h d 1) |
(cal cm 2) |
(mm) |
||
January rsquo;04 |
24.00 |
12.70 |
80.50 |
53.10 |
2.00 |
5.90 |
261.60 |
8.00 |
|
February rsquo;04 |
28.50 |
14.40 |
72.10 |
40.70 |
2.7 |
8.30 |
373.50 |
0.00 |
|
March rsquo;04 |
32.80 |
21.60 |
75.30 |
44.90 |
4.60 |
7.60 |
403.60 |
7.40 |
|
April rsquo;04 |
32.40 |
23.50 |
78.90 |
55.90 |
4.10 |
6.10 |
376.40 |
137.40 |
|
May rsquo;04 |
33.20 |
26.00 |
73.80 |
56.30 |
5.50 |
7.50 |
429.90 |
949.40 |
Source: Plant Physiology Division, BRRI, Gazipur, Bangladesh.
a Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh.
Table 2
Physicochemical properties of initial soil (before arsenic treatment, Mean plusmn; SD, n =3)
Soil properties |
Average value |
% Sand (2–0.05 mm) |
12.30 plusmn; 0.21 |
% Silt (0.05–0.002 mm) |
53.00 plusmn; 0.04 |
% Clay (lt;0.002 mm) |
34.70 plusmn; 0.03 |
Soil texture |
Silty clay loam |
Soil pH |
0.15 plusmn; 0.03 |
Total Nitrogen (%) |
0.15 plusmn; 0.03 |
Total Iron (%) |
0.22 plusmn; 0.01 |
Total Manganese (mg /kg ) |
<p 剩余内容已隐藏,支付完成后下载完整资料
资料编号:[21098],资料为PDF文档或Word文档,PDF文档可免费转换为Word </p |
课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。