基于ADAMS的汽车前悬架仿真分析及优化外文翻译资料

 2022-11-03 21:24:33

Abstract

The double wishbone (DWB) and the MacPherson strut (MPS) suspension systems are commonly used independent suspensions in passenger cars. Their kinematics are complicated, and have not been analysed comprehensively in existing literature. This paper presents an analysis of the position kinematics of the complete spatial model of these suspension systems. The presented solution is built upon two key elements: the use of Rodrigues parameters to develop an algebraic set of equations representing the kinematics of the mechanisms, and the computation of Grouml;bner basis as a method of solving the resulting set of equations. It is found that the final univariate equation representing all the kinematic solutions for a given pair of steering and road-profile inputs, in the general case, is of 64 degree, for both the suspension mechanisms. It is also shown that in certain special cases, both the suspensions generate 28 solutions, instead of 64. Numerical accuracy of the solutions obtained is established by computing the residuals of the original set of kinematic constraint equations. The configurations of the mechanisms for the real solutions are depicted graphically. Finally, the responses of the suspensions to continuously varying steering and road-profile inputs are computed using a branch-tracking technique.

Keywords

  • Double wishbone suspension;
  • Spatial kinematics;
  • Polynomial equations;
  • MacPherson strut suspension;
  • Grouml;bner basis;
  • Rodrigues parameters

1. Introduction

The main function of the suspension in a car is to isolate the sprung mass of the vehicle from the unevenness or undulations of the road. In many cases, it needs to provide the steering functionality, in addition. The suspension mechanism connects the wheel assembly (i.e., the unsprung mass) to the vehicle chassis (i.e., the sprung mass), in a manner that allows relative motions between the chassis and the wheels. Generally, suspension systems are categorised into two groups: dependent/rigid axle, and independent. A suspension connected to a rigid axle between the left and the right wheels is called a dependent suspension, since the vertical movement of one wheel is transmitted to the opposite wheel in these cases. The major disadvantage of rigid steer-able axles is their susceptibility to tramp-shimmy steering vibrations [1]. The independent suspension systems allow the left and the right wheel to move without affecting the others motion. Nearly all passenger cars and light trucks use independent front suspensions because of the advantages in providing room for the engine, and also for the better resistance to steering induced (wobble and shimmy) vibrations. There are many forms and designs of independent suspensions. However, double wishbone (DWB) and MacPherson strut (MPS) suspensions are perhaps the simplest and the most commonly used designs.

1.1. Double wishbone suspension

The DWB suspension, shown in Fig.ensp;1, is also known as the double A-arm or short-long arm (SLA) suspension. Each wishbone or arm has two mounting points attached to the chassis, and is connected to the knuckle by a spherical joint. The damper and coil spring system is placed between the chassis and either of the control arms, to smoothen the vertical movement. In the case of the front axle suspension, the steering link is attached to the tie-rod using spherical joints, and the tie-rod is connected to the steering rack by a universal joint. The DWB is used in high-performance cars and SUVs due its superior kinematic response over other suspensions [2].

Fig. 1.

Solid model of the double wishbone suspension.

Figure options

Various methods for modelling and designing the DWB suspensions exist in literature. In Ref. [3], by modelling the DWB suspension as a spatial RSSR-SS linkage, the author made use of the displacement matrices and the loop-closure constraints to synthesise and analyse these mechanisms. Other reported methodologies, as in Refs. [4], [5] and [6]], focused on designing the suspension system by optimising certain suspension performance indices, such as camber, caster, toe, and king-pin inclination. However, in these works, the kinematic constraint equations are used merely in formulating the constrained optimisation problems. In Ref. A comprehensive kinematic analysis of the double wishbone and Macpherson strut suspension systems

摘要

1.悬架简介

1.1.双摆臂悬架

在各种文献中存在设计和建立DWB悬架模型的多种方法。文献[ 3 ],通过模拟DWB悬架作为空间RSSR-SS联动,运用位移矩阵和闭环约束的合成和分析这些机制。其他报告的方法,如文献[ 4 ],[ 5 ]和[ 6 ],专注于设计悬架系统,通过优化某些悬架性能指标,如外倾角,后倾角,前束角和主销内倾角。然而,在这些作品中,运动约束方程只用于制定约束优化问题。在文献[ 7 ],作者利用设计的实验 在软件adams/view模块得到最优化的悬架系统的关键设计参数设置的设计参数范围。

1.2.麦弗逊式悬架

许多文献中有关于MPS悬架的运动学分析技术,突出的是文献[ 9 ]。建立了MPS的空间模型,并基于向量代数进行了线性化近似、非线性的位置分析。之后,Attia在文献[ 10 ]中提出的一些定义点的直角坐标和硬点位置的组合,而 Maacute;ntaras在文献【11】中利用欧拉参数形成约束方程。

Papegay等人在文献[ 12 ]试图采用减轻这些固有的缺点的迭代方法,通过采用从代数几何域的分析方法,即,基于Grouml;bner原理的符号计算(见文献[ 13 ]的介绍的Grouml;bner原理,特别是代数几何)的代数约束方程,以解决麦弗逊悬架的运动学问题。这样的解决方案,只要实现,有几个优势高于任何数值技术。首先,在牛顿-拉夫逊迭代的情况下,该方法给出的多项式系统的所有解决方案,而不只是一个最接近正解的猜测。其次,其计算的根本在于分析,而不是迭代,因此排除任何收敛的相关问题。此外,除了找到一个单变量多项式的根的最后一步(第五度或更高,它在理论上不可能总在封闭的形式下找到一个解决方案),计算是在封闭的形式。此外,原则上,以代数式形式运用Grouml;bner原理是可能的,从而在一个单一的解决方案中涵盖一个系统的所有可能的参数变化。最后,Grouml;bner原理不仅仅是提供了一个多项式方程组的精确解,它揭示了方程的结构,而不引入任何虚假根。

在目前的工作中,作者使用了相同的方法,即运用Grouml;bner原理来解决DWB和MPS悬架系统的运动学问题。DWB和MPS悬架的设计都需要考虑大量相关的因素,因此他们有相当大的设计空间。这一特征使我们能够更好地控制悬架系统的运动学响应。出于同样的原因,一个显着的困难呈现在任何这些系统的运动学/动力学研究:其运动学上的复杂性。根据其机械原理,DWB和MPS悬架都具有两个自由度:一个对应转向输入s(t),另一个对应由于道路轮廓输入Y(t)而产生的颠簸和反弹运动。获得悬架系统的输出信息或是对应这些机械输入的响应,根据不同的s(t)和Y(t)获得相应的主销轴位置是一个比较棘手的问题,而且根据笔者所知在现有的文献中还没有对这一问题详细的解决方案。相关的问题,如一组给定的输入的可能的解决方案的数量,存在的特殊情况下,等等,尚未得到回答。本文全面解决这些问题 。本文提出的建模和分析是确切的性质,即,它们不需要任何简化的假设或近似。然而,一些必要的运动学理想是包含在数学模型中的:

·不考虑连接的拉伸和压缩变形。

·所有悬架机构相关的几何参数被假定为完全已知的。

依据文献[15][16]的研究结果,悬架系统的运动学方程以代数公式的方式表现出来,从而根据Rodrigues参数表达出主销轴线的定位(见参考文献 [14], p64, 85)。保留这些方程的符号形式,并消除一些线性出现的未知数,在一般条件下即可获得一个含有三个Rodrigues参数的三次方程的系统。试图减少这种方程组(在他们的通用符号形式)的单变量多项式方程的三个未知参数中的一个的企图没有成功,在文献[ 12 ]也报告了同样的结果。然而,在替代悬架结构参数的数值后,根据输入的S和Y,利用字典式次序计算基于Grouml;bner原理的三次多项式方程是可能的。正如预期的那样,基于Grouml;bner原理产生的结果是三角形化的,即有一个单变量多项式,其程度相当于系统的可能的解决方案的数量,还有两个多项式,剩下的两个变量是线性的。在一般情况下,DWB和MPS的解决方案都是64,包括复杂的。对所有的这些解决方案,其真解都要带入原来的方程,以测试其数值精度。

此外,发现有一些特殊情况,其中的一些未知变量的上述线性消除失败,由于要消除的某些因子在分母。这些情况下需要分别处理,并观察到,在这种情况下,对于两个悬挂系统,可能的解决方案的数目减少到28。

本文提出的方法和结果可以帮助这些悬架系统的分析和设计。基于作者所进行的文献调查,似乎完全结合了悬架的垂直和转向运动的空间运动模型,如在本次研究中所做的那样,在其他文献中是罕见的,如果不是不存在的话。精确的解决方案,然而,根本是不存在的,根据作者的目前的认识。这本身,是这项工作的主要贡献,在一个数值方法似乎是占主导地位的学说的领域。此外,本次研究展示了一些特殊情况,其中由于某些特殊的结构变化而改变悬架的运动学特性。这样的分析有可能显着提高设计过程。例如,在参考文献[ 6 ],作者不得不诉诸替代输入,考虑到道路配置文件输入y在那次研究中是不可能的。因此,优化过程中不能以一个给定的颠簸和反弹距离需求为研究目标,这是由目前的研究方法所决定的。同样,在动力学分析中,首先需要一个高效的运动学模型,例如,研究人员利用基于Grouml;bner原理的算法作为运动学支撑来对一个5连杆空间悬挂系统进行动力学分析。本文对DWB和MPS两种悬挂系统都能实现上述要求。此外,它演示了一个跟踪方案,使一个特定的分支解决方案(64种可能)可以被跟踪,从而模拟连续输入的响应。这已在第4节被证明,分别使用连续变化的道路轮廓和转向输入,Y和S。此外,视频剪辑(文件名:video2.mp4,video3.mp4)动画同样已提供作为论文的材料补充。

本文的其余部分组织如下:在第2节中,讲述了制定闭环方程,消除两个可能的情况下的变量,和寻找DWB悬架解决方案的方法这些内容。最后,闭环方程的正解所对应的悬架构形以图形的方式表达了出来。在第3、4节中对MPS悬架的研究也阐述了相应的内容,提出了一个计算连续变化的输入响应的方法,并通过应用在DWB和MPS悬架系统上都进行了论证。在第5节中,讲述了论文的结论。

  1. 双摆臂系统的运动学分析

在这一部分中,展示了一个完整的DWB悬架运动学分析,从机制的建模开始,并建立了环路闭合方程。之后,为未知量的消除可能出现的两种情况进行鉴定,并找到解决方案,即,提出了满足给定的一组输入的可能的DWB悬架构型。紧接着的是对应原来的闭环方程正解的悬架构型的图形描述。

(此处省略4小节内容)

3.麦弗逊悬架的运动学分析

MPS悬架机构结构紧凑,运动学特性简单。它也是一个二自由度机构,其建模,方程式和求解与第二节中的DWB悬架类似。所有的符号和参数与在DWB的情况下保持相同的意义,除非是特别提到的。

3.1.麦弗逊悬架的几何构型

MPS悬架的示意图如图10所示。从运动学上看,它包括一个空间四连环结构o0p1o1o0 (这是一个倒置的曲柄滑块机构,将底盘作为地面连接,主销作为连接器)和一个空间五连环结构 o0p1p3p4p8o0。这两个环形结构在主销处连接(图10中连接点②)。

两个坐标系统,{ 0 }和{ 1 },用于描述MPS的点配置。参考系{ 0 }中的球形架构与o0点连接,它的Z0轴与A字下摆臂铰链的轴线成一条线段。之间A字型摆臂被等价地表示成一条在X0Ylt;

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[140652],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。