用于大规模图像识别的深度卷积网络外文翻译资料

 2022-12-18 15:30:36

英语原文共 14 页,剩余内容已隐藏,支付完成后下载完整资料


用于大规模图像识别的深度卷积网络

Karen Simonyan amp; Andrew Zisserman

摘要:在这项工作中,我们研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3times;3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到16-19加权层可以实现对现有技术配置的显著改进。这些发现是我们的ImageNet Challenge 2014提交的基础,我们的团队在定位和分类过程中分别获得了第一名和第二名。我们还表明,我们的表示对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。我们使我们的两个性能最好的ConvNe模型可公开获得,以便进一步研究计算机视觉中深度视觉表示的使用。

1 引言

卷积网络(ConvNets)近来在大规模图像和视频识别方面取得了巨大成功(Krizhevsky等,2012;Zeiler&Fergus,2013;Sermanet等,2014;Simonyan&Zisserman,2014)由于大的公开图像存储库,例如ImageNet,以及高性能计算系统的出现,例如GPU或大规模分布式集群(Dean等,2012),使这成为可能。特别是,在深度视觉识别架构的进步中,ImageNet大型视觉识别挑战(ILSVRC)(Russakovsky等,2014)发挥了重要作用,它已经成为几代大规模图像分类系统的测试台,从高维度浅层特征编码(Perronnin等,2010)(ILSVRC-2011的获胜者)到深层ConvNets(Krizhevsky等,2012)(ILSVRC-2012的获奖者)。

随着ConvNets在计算机视觉领域越来越商品化,为了达到更好的准确性,已经进行了许多尝试来改进Krizhevsky等人(2012)最初的架构。例如,ILSVRC-2013(Zeiler&Fergus,2013;Sermanet等,2014)表现最佳的提交使用了更小的感受窗口尺寸和更小的第一卷积层步长。另一条改进措施在整个图像和多个尺度上对网络进行密集地训练和测试(Sermanet等,2014;Howard,2014)。在本文中,我们解决了ConvNet架构设计的另一个重要方面——其深度。为此,我们修正了架构的其它参数,并通过添加更多的卷积层来稳定地增加网络的深度,这是可行的,因为在所有层中使用非常小的(3times;3)卷积滤波器。

因此,我们提出了更为精确的ConvNet架构,不仅可以在ILSVRC分类和定位任务上取得的最佳的准确性,而且还适用于其它的图像识别数据集,它们可以获得优异的性能,即使使用相对简单流程的一部分(例如,通过线性SVM分类深度特征而不进行微调)。我们发布了两款表现最好的模型1,以便进一步研究。

本文的其余部分组织如下。在第2节,我们描述了我们的ConvNet配置。图像分类训练和评估的细节在第3节,并在第4节中在ILSVRC分类任务上对配置进行了比较。第5节总结了论文。为了完整起见,我们还将在附录A中描述和评估我们的ILSVRC-2014目标定位系统,并在附录B中讨论了非常深的特征在其它数据集上的泛化。最后,附录C包含了主要的论文修订列表。

2. ConvNet配置

为了衡量ConvNet深度在公平环境中所带来的改进,我们所有的ConvNet层配置都使用相同的规则,灵感来自Ciresan等(2011);Krizhevsky等人(2012年)。在本节中,我们首先描述我们的ConvNet配置的通用设计(第2.1节),然后详细说明评估中使用的具体配置(第2.2节)。最后,我们的设计选择将在2.3节进行讨论并与现有技术进行比较。

在训练期间,我们的ConvNet的输入是固定大小的224times;224 RGB图像。我们唯一的预处理是从每个像素中减去在训练集上计算的RGB均值。图像通过一堆卷积(conv.)层,我们使用感受野很小的滤波器:3times;3(这是捕获左/右,上/下,中心概念的最小尺寸)。在其中一种配置中,我们还使用了1times;1卷积滤波器,可以看作输入通道的线性变换(后面是非线性)。卷积步长固定为1个像素;卷积层输入的空间填充要满足卷积之后保留空间分辨率,即3times;3卷积层的填充为1个像素。空间池化由五个最大池化层进行,这些层在一些卷积层之后(不是所有的卷积层之后都是最大池化)。在2times;2像素窗口上进行最大池化,步长为2。

一堆卷积层(在不同架构中具有不同深度)之后是三个全连接(FC)层:前两个每个都有4096个通道,第三个执行1000维ILSVRC分类,因此包含1000个通道(一个通道对应一个类别)。最后一层是soft-max层。所有网络中全连接层的配置是相同的。

所有隐藏层都配备了修正(ReLU(Krizhevsky等,2012))非线性。我们注意到,我们的网络(除了一个)都不包含局部响应规范化(LRN)(Krizhevsky等,2012):将在第4节看到,这种规范化并不能提高在ILSVRC数据集上的性能,但增加了内存消耗和计算时间。在应用的地方,LRN层的参数是(Krizhevsky等,2012)的参数。

2.2 配置

本文中评估的ConvNet配置在表1中列出,每列一个。接下来我们将按网站名称(A-E)来提及网络。所有配置都遵循2.1节提出的通用设计,并且仅是深度不同:从网络A中的11个加权层(8个卷积层和3个FC层)到网络E中的19个加权层(16个卷积层和3个FC层)。卷积层的宽度(通道数)相当小,从第一层中的64开始,然后在每个最大池化层之后增加2倍,直到达到512。

表1:ConvNet配置(以列显示)。随着更多的层被添加,配置的深度从左(A)增加到右(E)(添加的层以粗体显示)。卷积层参数表示为“convlang;感受野大小rang;-通道数rang;”。为了简洁起见,不显示ReLU激活功能。

在表2中,我们报告了每个配置的参数数量。尽管深度很大,我们的网络中权重数量并不大于具有更大卷积层宽度和感受野的较浅网络中的权重数量(144M的权重在(Sermanet等人,2014)中)。

表2:参数数量(百万级别)

2.3 讨论

我们的ConvNet配置与ILSVRC-2012(Krizhevsky等,2012)和ILSVRC-2013比赛(Zeiler&Fergus,2013;Sermanet等,2014)表现最佳的参赛提交中使用的ConvNet配置有很大不同。不是在第一卷积层中使用相对较大的感受野(例如,在(Krizhevsky等人,2012)中的11times;11,步长为4,或在(Zeiler&Fergus,2013;Sermanet等,2014)中的7times;7,步长为2),我们在整个网络使用非常小的3times;3感受野,与输入的每个像素(步长为1)进行卷积。很容易看到两个3times;3卷积层堆叠(没有空间池化)有5times;5的有效感受野;三个这样的层具有7times;7的有效感受野。那么我们获得了什么?例如通过使用三个3times;3卷积层的堆叠来替换单个7times;7层。首先,我们结合了三个非线性修正层,而不是单一的,这使得决策函数更具判别性。其次,我们减少参数的数量:假设三层3times;3卷积堆叠的输入和输出有CC个通道,堆叠卷积层的参数为3(32C2)=27C2个权重;同时,单个7times;7卷积层将需要72C2=49C2个参数,即参数多81%。这可以看作是对7times;7卷积滤波器进行正则化,迫使它们通过3times;3滤波器(在它们之间注入非线性)进行分解。

结合1times;1卷积层(配置C,表1)是增加决策函数非线性而不影响卷积层感受野的一种方式。即使在我们的案例下,1times;1卷积基本上是在相同维度空间上的线性投影(输入和输出通道的数量相同),由修正函数引入附加的非线性。应该注意的是1times;1卷积层最近在Lin等人(2014)的“Network in Network”架构中已经得到了使用。

Ciresan等人(2011)以前使用小尺寸的卷积滤波器,但是他们的网络深度远远低于我们的网络,他们并没有在大规模的ILSVRC数据集上进行评估。Goodfellow等人(2014)在街道号识别任务中采用深层ConvNets(11个权重层),显示出增加的深度导致了更好的性能。GooLeNet(Szegedy等,2014),ILSVRC-2014分类任务的表现最好的项目,是独立于我们工作之外的开发的,但是类似的是它是基于非常深的ConvNets(22个权重层)和小卷积滤波器(除了3times;3,它们也使用了1times;1和5times;5卷积)。然而,它们的网络拓扑结构比我们的更复杂,并且在第一层中特征图的空间分辨率被更积极地减少,以减少计算量。正如将在第4.5节显示的那样,我们的模型在单网络分类精度方面胜过Szegedy等人(2014)。

3 分类框架

在上一节中,我们介绍了我们的网络配置的细节。在本节中,我们将介绍分类ConvNet训练和评估的细节。

3.1 训练

ConvNet训练过程通常遵循Krizhevsky等人(2012)(除了从多尺度训练图像中对输入裁剪图像进行采样外,如下文所述)。也就是说,通过使用具有动量的小批量梯度下降(基于反向传播(LeCun等人,1989))优化多项式逻辑回归目标函数来进行训练。批量大小设为256,动量为0.9。训练通过权重衰减(L2惩罚乘子设定为5*10-4)进行正则化,前两个全连接层执行丢弃正则化(丢弃率设定为0.5)。学习率初始设定为10-2,然后当验证集准确率停止改善时,减少10倍。学习率总共降低3次,学习在37万次迭代后停止(74个epochs)。我们推测,尽管与(Krizhevsky等,2012)相比我们的网络参数更多,网络的深度更大,但网络需要更小的epoch就可以收敛,这是由于(a)由更大的深度和更小的卷积滤波器尺寸引起的隐式正则化,(b)某些层的预初始化。

网络权重的初始化是重要的,因为由于深度网络中梯度的不稳定,不好的初始化可能会阻碍学习。为了规避这个问题,我们开始训练配置A(表1),足够浅以随机初始化进行训练。然后,当训练更深的架构时,我们用网络A的层初始化前四个卷积层和最后三个全连接层(中间层被随机初始化)。我们没有减少预初始化层的学习率,允许他们在学习过程中改变。对于随机初始化(如果应用),我们从均值为0和方差为10minus;2的正态分布中采样权重。偏置初始化为零。值得注意的是,在提交论文之后,我们发现可以通过使用Glorot&Bengio(2010)的随机初始化程序来初始化权重而不进行预训练。

训练图像大小。令S是等轴归一化的训练图像的最小边,ConvNet输入从S中裁剪(我们也将S称为训练尺度)。虽然裁剪尺寸固定为224times;224,但原则上S可以是不小于224的任何值:对于S=224,裁剪图像将捕获整个图像的统计数据,完全扩展训练图像的最小边;对于Sraquo;224,裁剪图像将对应于图像的一小部分,包含小对象或对象的一部分。

我们考虑两种方法来设置训练尺度S。第一种是修正对应单尺度训练的S(注意,采样裁剪图像中的图像内容仍然可以表示多尺度图像统计)。在我们的实验中,我们评估了以两个固定尺度训练的模型:S=256S=256(已经在现有技术中广泛使用(Krizhevsky等人,2012;Zeiler&Fergus,2013;Sermanet等,2014))和S=384。给定ConvNet配置,我们首先使用S=256来训练网络。为了加速S=384网络的训练,用S=256预训练的权重来进行初始化,我们使用较小的初始学习率10minus;3

设置S的第二种方法是多尺度训练,其中每个训练图像通过从一定范围[Smin,Smax]我们使用Smin=256和Smax=512)随机采样S来单独进行归一化。由于图像中的目标可能具有不同的大小,因此在训练期间考虑到这一点是有益的。这也可以看作是通过尺度抖动进行训练集增强,其中单个模型被训练在一定尺度范围内识别对象。为了速度的原因,我们通过对具有相同配置的单尺度模型的所有层进行微调,训练了多尺度模型,并用固定的S=384进行预训练。

3.2 测试

在测试时,给出训练的ConvNet和输入图像,它按以下方式分类。首先,将其等轴地归一化到预定义的最小图像边,表示为Q(我们也将其称为测试尺度)。我们注意到,Q不一定等于训练尺度S(正如我们在第4节中所示,每个S使用Q的几个值会导致性能改进)。然后,网络以类似于(Sermanet等人,2014)的方式密集地应用于归一化的测试图像上。即,全连接层首先被转换成卷积层(第一FC层转换到7times;7卷积层,最后两个FC层转换到1times;1卷积层)。然后将所得到的全卷积网络应用于整个(未裁剪)图像上。结果是类得分图的通道数等于类别的数量,以及取决于输入图像大小的可变空间分辨率。最后,为了获得图像的类别分数的固定大小的向量,类得分图在空间上平均(和池化)。我们还通过水平翻转图像来增强测试集;将原始图像和翻转图像的soft-max类后验进行平均,以获得图像的最终分数。

由于全卷积网络被应用在整个图像上,所以不需要在测试时对采样多个裁剪图像(Krizhevsky等,2012),因为它需要网络重新计算每个裁剪图像,这样效率较低。同时,如Szegedy等人(2014)所做的那样,使用大量的裁剪图像可以提高准确度,因为与全卷积网络相比,它使输入图像的采样更精细。此外,由于不同的卷积边界条件,多裁剪图像评估是密集评估的补充:当将ConvNet应用于裁剪图像时,卷积特征图用零填充,而在密集评估的情况下,相同裁剪图像的填充自然会来自于图像的相邻部分(由于卷积和空间池化),这大大增加了整个网络的感受野,因此捕获了更多的上下文。虽然我们认为在实践中,多裁剪图像的计算时间增加并不足以证明准确性的潜在收益,但作为参考,我们还在每个尺度使用50个裁剪图像(5times;5规则网格,2次翻

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[20265],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。