分析茶中农药残留的GC-MS方法的评估和实验室验证外文翻译资料

 2023-01-04 10:19:02

分析茶中农药残留的GC-MS方法的评估和实验室验证

C. F. PENG, H. KUANG, X. Q. LI, and C. L. XU,

摘要:描述了一种通过气相色谱 - 质谱选择离子监测同时测定9种有机杂环农药残留的方法。明确地将相互分开的阿特拉津,乙烯菌核利,腐霉利,氟菌唑,灭草脲,噻嗪酮,丙环唑,氯苯嘧啶醇和哒螨酮用丙酮 - 己烷混合物萃取,用石墨化炭黑盒和中性Al2O3滤筒纯化,用丙酮 - 己烷混合物,同时由GC-MS测定,然后用外标法定量。回收率加标水平为0.01-30 mg kg-1时,农药含量介于73%〜116%之间,相对标准偏差在3%〜27%之间。此外,测定范围(0.01 mg kg-1至5.0 mg kg-1)和线性范围(0.02-40mu;gmL-1)显示同时测定中国茶叶中的多残留物(如乌龙茶,绿茶,红茶等)是可能的。进一步对5个实验室进行了实验室间实验,以进一步验证该方法,结果令人满意。

关键词:茶叶;农药;分析;GC-MS;选择离子监测

简介

常用的测定有机杂环农药残留物的方法是气相色谱 - 电子捕获检测器(GC-ECD)和带硝基磷检测器的气相色谱(GC-NPD)[1-3]。为了确定农药残留,现在质谱检测器逐渐被认为是一种对选择离子监测(SIM)模式的电流检测器,它对于检测不同类型的农药化合物具有高度敏感性,但很少有关于多用GC-MS测定茶叶中农药残留量,而有关水果或蔬菜的文献很多[4-14]。

茶是一种植物,其成分复杂,富含亲脂性内含物。由于采用了特殊的加工工艺,茶叶细胞容易被破坏,内含物也会流出并散布在叶面上,因此萃取后可能会流入有机溶剂中,出现目前尚不完善的茶样品。尽管已经报道了很多方法,但传统茶叶样品处理仍存在或多或少的缺陷,例如萃取和纯化效果不理想,有机试剂昂贵,以及复杂的取样方法[2-4,15 ]。在本研究中,其目的是优化提取和净化程序,并在MS模式下对9种有机杂环农药的多残留物进行同时分析,这些农药常用于中国茶叶的种植。建议的GC-MS-SIM方法快速,灵敏,准确,并且在实际应用中可行,可以满足食品添加剂质量控制的规范和标准[16]。

实验

试剂和材料

使用分析级丙酮,己烷和甲醇(北京化学有限公司,北京,中国)制备丙酮 - 己烷(phi;r= 1:3和phi;r= 1:2)和丙酮 - 己烷 - 甲醇(phi;r= 1:3 :0.5)解决方案。无水硫酸钠从Baker(Deventer,荷兰)获得,并在使用前在300℃下进一步净化20小时。使用蒸馏水和去离子水制备NaCl溶液(4质量%)。

表1.研究农药的相对质量,保留时间和监测离子

农药

Mr

保留时间/分钟

检测离子 (m/z)

阿特拉津

215

18.41

173, 187, 200lowast; , 215

乙烯菌核利

285

21.09

187, 198, 212lowast; , 285

腐霉利

283

25.46

96lowast;, 255, 283, 285

氯苯嘧啶醇

345

25.67

219, 248, 278lowast; , 287

抑霉唑

296

27.33

173lowast; , 215, 240, 296

噻嗪酮

267

28.30

105lowast; , 172, 175, 305

丙环唑

341

32.20, 32.58

173lowast; , 191, 259, 261

双氯苯

330

39.12

139lowast; , 219, 251, 330

哒螨灵

364

41.64

117, 147lowast; , 309, 364

* MS谱中含量最高的m / z离子

实验使用纯度优于98%的标准农药样品。农药的标准储备溶液(1.00 mg mL-1)通过精确称量并溶解在丙酮中制备并储存在冰箱(30°C)中。相应的标准工作溶液通过用己烷适当稀释并储存在冰箱(4℃)中制备。

样品制备

准确称取1 g等份的中国绿茶样品(0.001 g)并转移至15 mL离心管中。加入1克氯化钠和2毫升蒸馏水后,将试管振荡30秒。使混合物静置30分钟,与4mL丙酮 - 己烷(phi;r= 1:3)溶液混合,再次振荡2min并在2500min-1离心1min。将上层己烷溶液转移到15mL容量瓶中,用2mL丙酮和己烷的混合溶液(phi;r= 1:3)萃取两次。将两种萃取物放在一起并用1克无水硫酸钠干燥。将干燥的提取物定量转移至干净的试管中,并在微量样品处理仪器中在50℃的氮气流下蒸发至约1mL。

使用装有石墨化炭黑(装有1厘米厚无水硫酸钠层)和中性Al2O3固相萃取柱的固相萃取柱的真空过滤罐用于固相萃取( SPE)。两种药筒都用3 1 mL乙酸乙酯活化,然后用31 mL己烷(流速0.5 mL / min)活化。除去全部清洗液。

将浓缩干燥的提取物通过真空滤器罐后,用6.0mL丙酮 - 己烷溶液(phi;r= 1:2)。收集的洗脱液在50℃下在氮气流下几乎蒸发。最后,将溶液用己烷稀释至0.5mL的恒定体积并储存用于GC-MS分析。

GC-MS 分析

气相色谱仪(HP-5890 series II,Hewlett- Packard,Palo Alto,CA,USA)用熔融石英Ultra 2毛细管柱(DB-5,交联的5%苯基和95%甲基硅氧烷,30m 0.20毫米内径,0.25微米薄膜厚度),自动采样器(HP-7673),不分流进样器和HP-5971质量选择检测器。

色谱分析从70℃的烘箱温度开始,在此温度保持2分钟。然后,温度以8◦Cmin-1的加热速率增加到180◦C,3◦Cmin-1增加到280◦C。然后,烘箱温度保持18分钟。注入器温度为250℃,采用0.6 mL min-1的氦气(纯度99.995%)作为载气。 1mu;L的样品以分流模式注入,1分钟后打开阀门。质量检测器被设置为电子碰撞(70 eV)模式,离子源和界面温度分别为180℃和280℃。以15分钟溶剂延迟的SIM模式进行分析。表1中列出了农药残留的保留时间和监测离子(m / z)。

根据加标样品溶液中9种有机杂环类农药的含量,考虑到色谱图中的峰面积,选择相应的标准工作溶液。标准工作溶液和加标样品溶液的响应值被设置为符合线性响应的范围。对于农药含量的测定,始终注入相同体积的相应标准操作和加标样品溶液。

对具有相同保留时间的分析物进行定性分析是基于监测离子的相对富集值。如果标准工作溶液中存在的分析物与10%样品溶液中的分析物相匹配,则杀虫剂鉴定结果为阳性。

表2. 5次重复测定农药含量的回收率,精确度和测定限度

精确度/(mg kgminus;1) 回收率/%

农药 测定限度/(mg kgminus;1)

1 2 3 4 5 1 2 3 4 5

阿特拉津 0.02 0.04 0.10 0.50 2.00 109 plusmn; 7111 plusmn; 13 103 plusmn; 8 114 plusmn; 8 90 plusmn; 2 0.02

乙烯菌核利 0.02 0.04 0.10 0.50 2.00 98 plusmn; 2 80 plusmn; 5 105 plusmn; 9 101 plusmn; 6 88 plusmn; 1 0.02

腐霉利 0.02 0.04 0.10 0.50 2.00 93 plusmn; 3 94 plusmn; 7 92 plusmn; 5 98 plusmn; 2 99 plusmn; 3 0.02

氯苯嘧啶醇 0.38 0.75 3.80 15.0 30.0 81 plusmn; 10 77 plusmn; 7 88 plusmn; 12 79 plusmn; 8 83 plusmn; 5 0.38

抑霉唑 0.05 0.10 0.50 2.50 5.00 79 plusmn; 5 73 plusmn; 6 86 plusmn; 3 81 plusmn; 10 80 plusmn; 4 0.05

噻嗪酮 0.01 0.02 0.10 0.50 1.00 101 plusmn; 2 94 plusmn; 3 99 plusmn; 3 104 plusmn; 4 96 plusmn; 5 0.01

丙环唑* 0.05 0.10 0.50 2.50 5.00 99 plusmn; 7 108 plusmn; 9 81 plusmn; 2 100 plusmn; 9 92 plusmn; 10 0.05

双氯苯l 0.02 0.04 0.10 0.50 2.00 110 plusmn; 4 94 plusmn; 10 90 plusmn; 5 116 plusmn; 16 97 plusmn; 6 0.02

哒螨灵 0.25 0.50 2.50 10.0 20.0 87 plusmn; 8 89 plusmn; 6 95 plusmn; 6 90 plusmn; 5 92 plusmn; 4 0.50

*峰面积计算为丙环唑两种异构体峰面积的总和

农药含量的空白值是在不使用杀虫剂的情况下培育的茶样品的基础上确定的。样品制备过程与上述相同。

农药含量评估

根据文献[17]计算了9种有机杂环农药残留物阿特拉津,乙烯唑啉,腐霉利,三氟米唑,灭草脲,噻嗪酮,丙环唑,氯苯嘧啶醇和哒螨灵的含量,其中X /(mg kg-1)加标溶液中残留的农药残留量,A / mm2加标溶液中农药残留峰面积,CS /(mu;gmL-1)标准工作溶液中农药残留浓度,AS / mm2农药残留峰面积标准工作溶液,V / mL最终恒定体积和加标样品溶液的m / g最终量。抽取相应的空白值推导出农药残留量。

X=ACsV/Asm

为了评估该方法的可靠性和可重复性,从无农药栽培获得的1.0g粉碎茶的等分试样中掺入5种不同浓度的这些物质的调查性杂环农药的标准溶液。均化后,使样品静置过夜,然后重复5次农药含量测定的标准程序。

结果与讨论

所选择的农药的定性分析基于对特征片段的相对丰度的估计,例如,吡啶,哌嗪,咪唑,二嗪和其它碱。在全扫描模式下完成个体农药的识别。

然后,选择分子量最高的片段作为定量农药含量的特征指标。为此目的,质谱仪被切换到SIM模式,允许更精确和无干扰地估计选定碎片离子的强度。此外,在GC-MS-SIM模式下取样后选择离子。该实验揭示了在该方法中选择的离子监测模式显示出几个优点,例如,高灵敏度,强抗干扰性,并且提供精确定量分析的可能性。

使用所选杂环农药的标准溶液评估检测器响应的线性,浓度为30.00 mg至0.010 mg / kg样品质量。在此基础上校准,茶叶中的农药concentra-重刑确定。单个农药的测定限(LOD)是通过将预计保留时间的空白信号强度乘以三倍并考虑样品回收在表2中。

考虑到全部农药浓度范围(0.010-30 mg kg-1),重复实验显示农药回收率在73%至116%之间,相对标准偏差优于11%(表2)。

为了验证所开发程序的真实性和准确性,在5个实验室实现了独立实验:海南出入境检验检疫局(A),湖南省疾病预防控制中心(B),湖南大学(C),中南大学矿物加

剩余内容已隐藏,支付完成后下载完整资料


sect;c 2007 Institute of Chemistry, Slovak Academy of Sciences

DOI: 10.2478/s11696-006-0086-9

Evaluation and Interlaboratory Validation of a GC-MS Method for Analysis of Pesticide Residues in Teas

C. F. PENG, H. KUANG, X. Q. LI, and C. L. XU*

School of Food Science and Technology, Southern Yangtze University, 214036 WuXi, JiangSu Province, China e-mail: xcl@sytu.edu.cn

Received 15 June 2006; Revised 30 July 2006; Accepted 4 September 2006

A method was described for simultaneous determination of nine organic heterocyclic pesticide residues by gas chromatography-mass spectrometry-selected ion monitoring. Atrazine, vinclozolin, procymidone, triflumizole, imazalil, buprofezin, propiconazole, fenarimol, and pyridaben were clearly separated from each other, extracted with acetone—hexane mixture, purified with graphitized car- bon black cartridge and neutral Al2O3 cartridge, eluted with acetone—hexane mixture, simultane- ously determined by GC-MS, and then quantified with an external standard method. Recoveries of

pesticides ranged from 73 % to 116 % at the spiked level of 0.01—30 mg kgminus;1, while the relative standard deviation was between 3 % and 27 %. In addition, the limits of determination (0.01 mg kgminus;1 to 5.0 mg kgminus;1) and linearity (0.02—40 micro;g mLminus;1) revealed that simultaneous determination of multi-residues in Chinese teas (like Oolong tea, green tea, red tea, etc.) was possible. Further-

more, an interlaboratory study among 5 labs was conducted to further validate the method, and the results were satisfactory.

Keywords: tea, pesticides, analysis, GC-MS, selected ion monitoring

INTRODUCTION

The methods in common use for the determina- tion of organic heterocyclic pesticide residues are gas chromatography coupled with electron capture detec- tor (GC-ECD) and gas chromatography with nitro- gen phosphorus detector (GC-NPD) [1—3]. To deter- mine pesticide residues, nowadays, mass spectrometric detector is gradually considered as a current detec- tor with selected ion monitoring (SIM) mode that is highly sensitive for the detection of different types of pesticide compounds, but there are few reports about multi-residue determination of pesticides in teas by GC-MS, while there are many published papers about fruits or vegetables [4—14].

Tea is such a plant that has complicated compo- sition and abundant lipophilic inclusions. Due to the special processing technology, the tea cells are easy to be destroyed and the inclusions run out and spread over the surface of foliage, so, when extracted, they are likely to flow into the organic solvent and a tough task for the clean-up of tea samples that are presently im-

perfect comes forth. Though many methods have been reported, there still exist more or less deficiencies in the traditional treatment of tea samples, for example, unsatisfactory extraction and purification, high expen- diture of organic reagents, and complex sampling pro- cedures [2—4, 15]. In the present study, the aim was to optimize extraction and clean-up procedures and val- idate in MS mode the simultaneous analysis of multi- residues of nine organic heterocyclic pesticides, which are often used in the cultivation of tea in China. The proposed GC-MS-SIM method, which is rapid, sensi- tive, and accurate, and well practical in the applica- tion, could fulfill the specifications and standards for food additives quality control [16].

EXPERIMENTAL

Reagents and Materials

Analytical grade acetone, hexane, and methanol (Beijing Chemical Co., Beijing, China) were used to prepare acetone—hexane (ϕr = 1 : 3 and ϕr = 1 : 2)

*The author to whom the correspondence should be addressed.

Table 1. Relative Mass, Retention Time, and Monitored Ions of the Studied Pesticides

Pesticide

Mr

Retention time/min

Monitored ions (m/z)

Atrazine

215

18.41

173, 187, 200lowast; , 215

Vinclozolin

285

21.09

187, 198, 212lowast; , 285

Procymidone

283

25.46

96lowast;, 255, 283, 285

Triflumizole

345

25.67

219, 248, 278lowast; , 287

Imazalil

296

27.33

173lowast; , 215, 240, 296

Buprofezin

267

28.30

105lowast; , 172, 175, 305

Propiconazole

341

32.20, 32.58

173lowast; , 191, 259, 261

Fenarimol

330

39.12

139lowast; , 219, 251, 330

Pyridaben

364

41.64

117, 147lowast; , 309, 364

*The most abundant higher m/z ion in MS spectrum.

and acetone—hexane—methanol (ϕr = 1 : 3 : 0.5) solutions. Anhydrous sodium sulphate was obtained from Baker (Deventer, The Netherlands) and further purified for 20 h at 300 C before use. Distilled and deionized water was employed to prepare solution of NaCl (4 mass %).

For the experiments, standard pesticide samples with purity better than 98 % were used. Stock stan- dard solutions of pesticides (1.00 mg mLminus;1) were pre- pared by exact weighing and dissolution in acetone and stored in a freezer ( 30 C). Corresponding stan- dard working solutions were prepared by appropriate dilution with hexane and stored in refrigerator (4 C).

minus;

Sample Preparati

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[281573],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。