Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry
A.A. Carvalho, J.M.A. Rebello, M.P.V. Souza, L.V.S. Sagrilo, S.D. Soares
a .Science Technological Center, University of Fortaleza, UNIFOR, Av. Washington Sores , 1321,Edson Quiroz, CEP: 60, 811-905 Fortaleza-CE, Brazil
b. Federal University of Rio de Janeiro, CEP: 21941-972, Rio de Janeiro, RJ, Brazil
c .Department of Civil Engineering, COPPE/UFRJ, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
d . Cidade Universitaria , Ilha do Fundao, CEP: 21949-900, Rio de Janeiro, RJ, Brazil
ARTICLE INFO
Article History:Received 9 November 2006;Received in revised form 21 May 2008;Accepted 27 May 2008
Key Words:Non-destructive inspection :Reliability :Ultrasonic testing :Radiography
ABSTRACT
The aim of this work is to evaluate the reliability of non-destructive test (NDT) techniques for the inspection of pipeline welds employed in the petroleum industry. Radiography, manual and automatic ultrasonic techniques using pulse-echo and time of flight diffraction (TOFD) were employed. Three classes of defects were analyzed: lack of penetration (LP), lack of fusion (LF) and undercut (UC). The tests were carried out on specimen made from pipelines containing defects, which had been artificially inserted on laying the weld bead. The results showed the superiority of the automatic ultrasonic tests for defect detection compared with the manual ultrasonic and radiographic tests. Additionally, artificial neural networks (ANN) were used in the detection and automatic classification of the defects.
@2008 Elsevier Ltd . All rights reserved.
1. Introduction
Pipelines are the safest and most economical method for transporting fluids (oil and gas) over long distances .Due to this and their efficiency, pipelines have been used for several decades and consequently factors, such as corrosion, fatigue or even erosion increasing the danger of leaks or even bursting, are now critical factors to be considered. Also it should be pointed out that many pipelines are laid near or beneath roads, railway lines, waterways and even within cities. Therefore it is necessary to have ways to monitor, evaluate and assure the integrity of the pipeline, reducing the risk of leaks and consequently averting environment damage and hazards for the population. For many years, non-destructive tests have been used with efficiency in evaluating the state of the pipelines in the oil industry。
Non-destructive test techniques are being researched more and more and are used as methods to evaluate engineering structures and systems, as much during the setting up phase as during their useful life. Special attention has been given to this research for the oil industry due to the serious consequences that could occur with equipment failure, such as: environmental disasters and loss of human lives. However, one of the parameters that should be taken into consideration on selecting the most adequate non-destructive test technique to be used is its reliability, which is evaluated using probability detection curves (PoD) that represent the probability of detection of a defect with a particular size.
For the inspection of pipeline two techniques are outstanding due to their efficiency and ease of operation: ultrasonic and radiography. Both the manual ultrasonic or conventional and the automatic ultrasonic are frequently used, although the automatic method has various advantages over the conventional method. Among these advantages are increase of inspection speed, high PoD and consequently increase in inspection reliability, documentation of inspection register, interpretation of the results by images and the possibility of computerized processing with artificial neural networks [1–3], among others.
Although radiographic tests are still commonly used for the inspection of pipelines in the oil industry, efforts are being made to substitute them for other inspection methods principally due to inconveniences such as: presence of ionized radiation which is a danger to the operator and the need to develop and keep film.
Image processing techniques, signal processing and artificial intelligence such as artificial neural networks allied with the nondestructive test techniques have provided important contributions to evaluate reliability in general and can be incorporated as auxiliary tools as in the case of this present work.
The aim of this work is to evaluate the reliability of non-destructive tests in the inspection of pipelines. Four different techniques were considered: manual ultrasonic, automatic ultrasonic by pulse-echo, automatic ultrasonic by TOFD and radiography.
Additionally, artificial neural networks were used in the selection and classification of defect patterns. Initially the neural networks were evaluated in the automatic classification of the classes with defect (D) and without defect (ND). At a later stage the ANN was tested to automatically classify three classes of defect: lack of penetration (LP), lack of fusion (LF) and undercut (UC). Signal processing tools were used to improve the performance of the classification.
Pipelines were manufactured with defects artificially inserted in the weld bead. Three classes of defects were simulated: LP, LF and UC.
In the last years some researchers have been developed to evaluate the reliability of non-destructive tests. In recent paper , Gandossi[4] applied the Bayesian models [5] to update the uncertainty about the flaw depth based on the sizing performance of several teams in the Round Robin Trial (RRT). The application was limited to the analysis of flaw depth sizing and the main ultrasonic techniques applied by the inspection teams were pulse-echo(longitudina
剩余内容已隐藏,支付完成后下载完整资料
无损检测技术在检测石油管道时的可靠性
卡瓦略·库切答(a);雷贝洛(b);米纳拉辛苏扎·苏哲(b);
湖奈保尔·苏格瑞勒(c);萨拉bull;迪基·苏亚雷斯(d)
- 华盛顿苏亚雷斯马路大学科学技术中心,1321;巴西福塔雷萨行政长官, 埃德森奎罗兹临时选举委员会:60,811 - 905
- 巴西里约热内卢联邦大学临时选举委员会:21941 - 972
- 巴西里约热内卢联邦大学土木工程系
- 巴西里约热内卢大学城临时选举委员会:21949 - 900
文章内容
文章背景: 2006年11月9日收到
2008年5月21日修改后的表格
2008年5月27日认可
关 键 词:无损检测;可靠性;超声检测;X线摄影
摘 要
这项工作的目的是评估无损检测技术(NDT)在检查石油工业中的管道焊缝的可靠性。X射线,手动和全自动的超声波都利用了脉冲回波和光线干涉原理。三个层面的缺陷分析为:缺乏渗透(LP),缺乏融合(LF)和削弱(UC)。这些测试是对含焊缝缺陷已被人为地确定为标本的管道进行测试。结果表明:全自动超声波检测缺陷与手动超声波、X光测试相比更具有优越性。此外,人工神经网络已被用于探测缺陷和缺陷的自动分类。
第1章 简介
在长距离的流体(包括石油和天然气)传输过程中,管道运输时最安全最经济的方法。由于这一点和管道的效率,他们已用了几十年。但是由于种种因素,如腐蚀,疲劳,甚至侵蚀所增加泄漏的危险,甚至破裂,这些都是现在应该考虑的关键问题。还应该指出,许多管道铺设在接近道路,铁路,水路甚至在城市或在其下方。因此,必须有方法监测,评价和肯定管道的完整性,减少泄漏的风险,从而避免环境破坏和人群危害。多年来,无损检测在石油管道的状态检测中显示了其高效性。
无损检测技术正被研究的越来越深,同时已经作为评估工程结构、工程系统使用寿命的方法。这项研究特别注意了石油工业可能发生的设备故障导致严重后果,比如环境污染和人员伤亡。然而,一般认为应考虑采取最适当的参数来选择无损技术,剩下的就是它的使用可靠性,其中一个检测与确定缺陷大小的评估检测概率曲线(POD)是最具代表性的。
对于管道检测的两种技术超声波和X线检查比传统方法更具有出色的效率和易于操作性。无论是手动超声波或常规和自动超声波都经常使用,虽然自动方法有多种优势。这些优点是检测速度快,检测概率的增加,从而增加检查的可靠性,检测数据记录,结果的图像处理和人工神经网络计算机处理,等等。
虽然放射检测仍然普遍用于检查石油工业用管道,但已经正在努力向能够代替它的方法发展,这主要是由于它们有如下不便:电离辐射对操作者的威胁、进一步研究影像的保持问题。
图像处理技术,信号处理和人工神经网络的完美集合为无损检测技术一般的评价可靠性作出了重要的贡献,可作为现场的工作情况的记载辅助工具。
这个工作的目的在于评估探测管线系统的可靠性。四个不同的技术被应用上: 手动超声波、全自动脉波-回波超声波、全自动TOFD超声波以及摄影。
图1 测试图解
此外,人工神经网络方法应用于选择和分类缺陷形式。最初的神经网络自动分类技术进行评估的的结果是缺陷(D)和无缺陷(ND)。在以后的神经网络自动测试分为三类缺陷:缺乏渗透(LP)、缺乏融合(LF)和削弱(UC)。信号处理工具是用来改善分类的绩效。
管道在焊缝过程中被人为制造了缺陷,进行了三个层次的缺陷模拟:缺乏渗透(LP)、缺乏融合(LF)和削弱(UC)。
在过去的几年,一些研究者已经开发出了无损检测可靠性评估。在最近的报导中,甘多斯应用贝叶斯模型的不确定性,更新了在循环检测测量裂纹深度。这个应用程序检测缺陷深度采用的是超声脉波-回波(纵向和横波) 技术,聚焦探头、相控线阵和时间衍射的有限元分析。在另一篇当中,甘多斯提出的一个框架为量化ENIQ(欧洲网络进行检查资格)检验合格的方法论,采用贝叶斯机制,甘多斯表明它将是证明聚集技术的资料和证据。
第2章 评估方法
2.1试样
为了进行试验,标本是从直径为254毫米,厚19毫米,长6000毫米的APIX70管道制取的。 12个环焊缝缺陷被人为地插入了焊缝(图1),同时两处 无缺陷,也焊接了14焊缝。插入的三类缺陷是:缺乏融合,缺乏渗透,削弱(图2)。一共有8个缺陷沿每个放入的12焊珠。
所有的焊缝进程都使用两种不同的进程:氩弧焊根通、气体保护焊条焊接或药芯焊丝电弧焊满缝隙。焊接后的标本按如下顺序检查:X光技术、人工超声波检测和全自动超声波检测。
缺陷融合的模拟使用了与预期大小相同缺陷薄片状与以前侧壁对锥焊接。图3缺陷和缺乏融合模拟图显示的高度已经降低约2毫米,以确认它的存在,在一个缺陷融合模拟区金相部分。缺陷渗透模拟也是利用薄板焊接根置于此缺陷的预计高度。所有的缺陷检测在20至30毫米长度上,在32个缺陷位置每一层次的缺陷造成四个不同的高度(1,2,4和8毫米)。表1显示了每个缺陷的高度和沿关节的变化。
2.2使用X光测试的试样检查
X线检查用的是伽马射线(来源:钴60)和X射线。两种检查方法被用于:双壁单形象和单壁单图像。测试焊接接头使用伽玛四拍造影,而使用X光检查每个关节采用的是八拍。
为了帮助在胶片上的缺陷识别和大小判定进行可视化,相同的是数字化和加工使用特定的数字滤波器,消除和平滑的任何最终的X光图像的噪声。要重点指出的是,为了不失去任何图像过滤器程序应进行仔细的扫描,例如可能产生的缺陷偏小的现象。
图2 三个焊缝类型缺陷的素描研究:(a)融合缺乏,(b)缺乏渗透和(c)削弱
2.3使用超声波测试的试样检查
为了进行可靠性标本检查三个合格的检查者进行操作人工回波检测缺陷长度,。对这个尺寸长度的缺陷按照6分贝的方法和标准进行验收,使用的是距离幅度曲线(DAC)。校准曲线的工作是由一个参考块,详细的检查过程中PR-011,每个检验员追踪自己的工作曲线进行了检测。
图3模拟缺乏融合的方法
2.4用自动超声技术检查标本
自动检测设备使用的磁轮车辆进行检查,这一设备是由一套固定的传感器负责沿线的扫描,由常规超声波焊接设备、8位超声波传感器换能信号、计算机控制系统和存储数据组成。这个模拟输出信号的超声波设备被连接到计算机,通过转换并在数字扫面脉冲20ms/s下进行数字化。这种转换器是负责超声检测信号数字化,将会被储存在电脑的记忆。计算机是负责下列操作:控制、通过并行端口,任何的8位传感器的信号,它的输入是控制检查车辆运动的通过串口和储存的数字化的信号。
图4金相部分地区的焊缝缺陷。箭头表示职位的缺陷
对于TOFD检测技术的结果分析,是由一个特定开发的程序MATLAB软件来完成的,它的目的是为了读A扫描和装配一个D 扫描图像。这个程序允许沿焊缝的连续性检测,测量周围的管道周长长度和厚度垂直高度。校准后,所有发现的缺陷的大小可以确定的。
第3章 结果
最初,初步评价中的缺陷是由人为伽马线和几何学的单图像-双墙检测技术。实验结果表明,未焊透和削弱引起的缺陷能够显示在放射性照片上,但缺乏融合的缺陷,尽管采用高分辨率细纹射线胶片用伽马和x射线,甚至当采用单一图像-单壁技术进行检查,也是无法检测出来的。根据摩根等关于缺乏融合缺陷由外侧壁插入斜面焊接,因此这是一个清晰明了的结果:这类故障不能利用影像学技术进行检测。
表1 角度和模拟缺陷投影高度
图5显示了通过中位数过滤器和经过数字化的含有高度约8mm缺乏渗透的焊缝缺陷的X光影像。
图5 高8毫米(含)焊缝缺陷与不足的投影
表2显示的是用人工和自动超声回波检测技术检测到的各个层次缺陷的数据。此表表明,在检测过程中,缺乏渗透类缺陷概率至少为75%(2号检测结果),而检查结果1和3达到了90.6%的检测概率。这类缺陷平均大小错误在28.6%和34%之间。这些测试结果表明,随着缺陷高度的增加,POD的效率也随着提高;但需要指出的是,当使用6分贝超声检测方法时高度的增加和长度的正确大小两者之间没有直接关系。
实验结果对于削弱缺陷显示(表2):由1号和2号检测的概率分别是100%和96.9%。结果中的87.5%是由3号检测机器人对高度减少1-2mm的削弱缺陷进行无损检测得到的。尺寸误差的波动范围是21.1%到24.5%,但是随着高度的增加误差的概率而在增加,这与检测方法无关。从放射检测中,这些尺寸误差决定了缺陷的真实尺寸的价值。由于不可能使用射线技术来检测缺乏融合这一种缺陷,所以这类缺陷的误差将无法得到。
表2 缺陷等级评估技术的总结
对于缺乏融合,缺损的误差概率在90.6%和96.9%之间变化,其效率随着缺陷高度的增加而趋于完善,与使用的焊接方法无关。
使用自动超声脉冲回波探测技术,其高概率将会显现出来。在所有插入的缺陷(每类32个)中只有6个缺乏融合缺陷和2个削弱缺陷不能被检测到。在评价自动脉冲回波技术检测中,应用了自己的信号A扫描,如图6所示。
图6 含有8个削弱缺陷的扫描信号
在自动脉冲回波测试,各种传感器定位在一个装置,检测整个标本移到沿焊缝所有厚度,如图7所示。这一试验表明,在检测小缺陷时,传感器之间的覆盖物是必要的。
图7 自动脉波-回波超声检查
对缺陷的高度尺寸进行检测使用了自动超声波TOFD检测技术。这项加载了自动脉冲回波技术的检测方法,具有误差很小的检测概率。在所有样本中插入人工缺陷, TOFD检测技术检测的融合缺陷达到93.75%,渗透缺陷达到53.13%和削弱类缺陷为100%。在TOFD科技的自动检测缺陷中,缺陷的检测是由D扫描图像完成,而缺陷高度尺寸是由A扫描信号完成的。
图8 D扫描图像检测缺陷的TOFD技术
表3显示的是缺乏渗透类缺陷在人工脉冲回拨检测中的结果,在这三种检测方法中尺寸的平均误差是30.7%,远低于由射线探测得到的数据。它也表明,最大的误差发生在最大的缺陷尺寸处。对于自动脉冲回波测试平均误差为18.9%,也倾向于低估的实际长度。此外,不同于手动脉冲回波测试,最大误差出现在高度最小的缺陷。对于在TOFD检测技术的缺陷通过X光图像,检测到的长度尺寸平均误差只有12%,倾向于特大型长度。但是可以证明,对于缺乏融合类缺陷的自动化技术的得到的误差大小比传统测试得到的要小。
表3 缺陷尺寸误差对比
对于削弱类缺陷由人工超声回波得到的平均尺寸误差大小为22.4%,倾向于大于由射线测试得到的数据。检测器得到结论是缺陷高度越大则误差也越大。自动脉冲回波检测到的缺陷误差平均大小是26.2%也与实际尺寸偏大。然而,通过射线测试TOFD技术得到的平均误差大小是112.2%又比实际尺寸偏大。例如,削弱型缺陷没有使用TOFD技术得到的大小高度在1至2毫米之间。
采用射线影像作为缺陷尺寸的参照,在无损检测中一个具有对比性的分心被拿了出来。缺乏融合的缺陷没有在考虑范围中因为它无法采用射线探测技术。表3列出在每个测试技术的缺损长度大小的误差值。
图9 影像技术测量的缺陷大小的和脉冲回波反应的相关性
图9显示的是由射线探测和超声回波技术产生的沿长度方向上误差大小的对比。考虑到所有的缺陷类,可以看出,对于长度不超过40毫米的管道获得的静态值接近X线影像给的真值。但是40毫米以上的管道,检测到的尺寸往往比实际尺寸偏小。
图10给出的是射线技术给的缺陷长度的真值与自动超声回波检测给的真值之间的对比。考虑到所有类型的缺陷,可以证明通过射线检测得到的数据只在真值到的上下变动,没有太大的偏大或者偏小的趋势。而对于TOFD检测技术在图11中可以看出也是在真值附近波动,但是由于受削弱缺陷的影响它有一个较大的波动性。
图10 影像自动脉波-回波技术扫描缺陷长度尺寸的相关性
大量的作品试图利用概率来检测尺寸误差进行可靠的超声检查。当前工作的这些研究是通过广泛的测试同时也受到很多人为因素的影响。通过很少的人为干涉和更可靠的平常人工方法的自动检测技术的文献中可以发现缺陷概率在34%至97%之间。
3.1 模式识别与人工神经网络
计算机技术创新的增长主要归功于与人工智能的结合,如人工神经网络(ANN),已在自动检测和分类系统的缺陷模式很大的发展。在这项工作中,模式分类器使用的人工神经网络识别从焊接接头超声检查TOFD检测信号。这些分类器能初步评估为缺陷(D)和非缺陷(ND)和后来的三种焊接接头类型削弱缺陷(UC),缺乏融合(LF)和缺乏渗透(LP) - 这是人为地在焊缝预处理技术采用萨维茨奇·格雷过滤器被应用于网络输入信号以方便自动分类。
一个人工神经网络是一个简单的数学模型,其宗旨是代表了人类大脑的不同情况下的行为。这个数学模型由一个通用插值公式刺激组件系统(人类神经细胞)及其相关的响应函数。该方程中包含未知数(突触激励),必须不断激励系数进行评估,根据已知的激发(输入)和响应(输出)为基础。在这种计算称为人工神经网络方面的训练。为了证明这个模型是否正常工作或没有其他已知的激励和响应,而不是在训练,应该得到模型测试。
神经网络现在可以训练,以帮助人们解决困难的问题。在使用这种人工神经网络工作的目标是:(I)为了提高诊断专家对缺陷类型的分类;(II)获得可靠便捷的自动分类的工具。
图11影像
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[29718],资料为PDF文档或Word文档,PDF文档可免费转换为Word
课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。