用于能量收集的双频段微波整流器外文翻译资料

 2022-12-24 16:03:38

DOUBLE BAND MICROWAVE RECTIFIER FOR ENERGY HARVESTING

Ismahayati Adam,1 Mohd Fareq Abd Malek,1,2 Mohd Najib Mohd Yasin,3 and Hasliza A. Rahim1

  1. School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia; Corresponding author: ismahayati@unimap.edu.my
  2. School of Electrical System Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  3. School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia

Received 31 July 2015

ABSTRACT: Energy harvesting has been investigated by many researchers due to their ability to generate power by using existing sources which eliminate the need of batteries and power supply that requires extra cost to the system. Rectifier is the main component in energy harvesting where it converts RF sources to DC power. This work presents the design and investigation of the seven-stage rectifier. A Vil-lard configuration is chosen with consists of two HSMS 2850 Schottky diodes and two through hole ceramic capacitors for each stage. The aim of this article is to study and evaluate the rectifier performance at 550 MHz and 900 MHz frequency range. Rectifier properties such as number of stage, capacitance effects, and variation in capacitorrsquo;s combination, and are analyzed and discussed in this article. The result shows that the designed rectifier is operate well at the targeted frequencies. Measured results show that voltages of 9.17 V and 3.78 V are obtained for an input of 0 dBm at 900 MHz and 550 MHz, respectively. The circuit is generating 44.4% rectified output than in the reference work. VC 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:922–927, 2016; View this article online at wileyonlinelibrary.com. DOI 10.1002/ mop.29709

Key words: rectifier; energy harvesting; wireless power transfer; volt-age multiplier; schoktty diode

1. INTRODUCTION

Energy harvesting is an interesting research topic which would become a promising alternative to existing energy resource. Var-ious reliable electromagnetic (EM) resources such as signal transmission from television and radio broadcasting, wireless LAN, and mobile phone signal are ubiquitous in the atmosphere has triggered significant interest in radio frequency (RF) energy harvesting. Furthermore, with the development of Wireless Power Transfer (WPT) technologies that allow maintenance-free and mobile electronic devices to operate without batteries has derived for RF energy harvesting [1].

WPT technologies and energy harvesting open up new excit-ing possibilities in wireless communication and networking by enabling energy self-sufficient, energy self-sustaining environ-mentally friendly operation with practically infinite lifetimes. RF enjoys many advantages over other energy sources. It does not depend on the time of day, does not require exposure to heat or wind, and can be moved freely within the range of the transmission source.

Exposure to electronic objects grow as human become more attach to electronic gadget, hence concerns about radiation have also increased. Although most radiation from these electronic devices is harmless, the radiated energy is not being utilized, and thus a device capable of harvesting energy can be built [2]. One of the most promising methods to harvest the wireless energy is to use a rectenna which is a combination of rectifier and antenna (Figure 1). The wireless energy can be collected by the antenna attached to rectifying circuit which converts the energy into DCpower. The rectifier circuit, especially the diodes used, mainly determines the RF to DC conversion efficiency and Schottky diodes appeared to be a good candidate as they widely used [3–7].

Energy harvesting from various sources (RF wave, solar, vibration, piezoelectric, etc.) has been in the focus of the research community in recent years. Wireless battery charging system using radio frequency energy harvesting is discussed in [8]. A seven-stage Schottky diode voltage doubler is demon-strated in Ref. 7 showing an output of 3 mV across 100 kOhm load for an incident signal of 240 dBm. The authors in Ref. 9 have showed that a voltage of 2.78 V is harvested at a distance 10 m from GSM cell tower by implementing a six stage voltage doubler. While, it is claimed in Ref. 10 that the harvest energy from the rectifier system was able to charge a storage capacitor to 2.8V and sustain the power without load attached. In Ref. 11, the authors investigate the feasibility and potential benefits of using passive RFID as a wake-up radio. Harvesting from Digital Television (DTV) was first investigated by Intel, where 60 lW of energy was harvested at a distance of 4km from broadcasting TV station [12,13]. It is reported in Ref. 9 that maximum avail-able GSM power density level does not exceed l mW/m2 for distance ranging 25 m to 100 m from base station.

To the best of authorsrsquo; knowledge, none of the literature reported on energy harvesting in broadcasting frequency band in this region, thus this work proposed a rectifier where it is tar-geted to harvest energy from both broadcasting and GSM band with frequency of 550 MHz and 900 MHz. Aside from GSM frequency, harvesting energy in broadcasting frequency is a riv-eting part to explore as the energy is widely available in the atmosphere. Hence, it is interesting to investigate the perform-ance of the designed rectifier in both frequency ranges.

The circuit is proven to produce more rectified DC voltage than [7] with adding ability of operating at dual frequencies.

Figure 1 Rectenna block diagram.

2. RECTIFIER DESIGN

The rectifier presented is this article is based on seven-stage Villard multiplier with Schottky diode as stated in Figure 2. The configuration is chosen due to its simplicity and wi

剩余内容已隐藏,支付完成后下载完整资料


用于能量收集的双频段微波整流器

马来西亚大学马里兰大学计算机与通信工程学院(UniMAP); 通讯作者:ismahayati@unimap.edu.my

马来西亚佩利斯大学电机系统工程学院(UniMAP)

马来西亚大学马里兰大学微电子工程学院(UniMAP)

2015年7月31日

摘要:许多研究人员已经对能量收集进行了调查,因为它们通过使用现有的资源消除了需要额外成本的电池和电源的发电能力。整流器是将RF源转换为直流电源的能量收集的主要组成部分。这项工作介绍了七级整流器的设计和研究。选择Vil-lard配置,由两个HSMS 2850肖特基二极管和每个级的两个通孔陶瓷电容器组成。本文的目的是研究和评估550 MHz和900 MHz频率范围内的整流器性能。整流器性能如电容数量,电容效应以及电容组合的变化,并在本文中进行了分析和讨论。结果表明,设计的整流器在目标频率下运行良好。测量结果表明,在900 MHz和550 MHz时分别为0 dBm的输入获得9.17 V和3.78 V的电压。该电路正在产生比参考工作中44.4%的整流输出。

关键词:整流器; 能量收集; 无线电力传输; 电压倍增器 肖特基二极管

1.介绍

能源收获是一个有趣的研究课题,将成为现有能源的有前途的替代品。无线电广播,无线局域网和手机信号等信号传输的可靠电磁(EM)资源在大气层无处不在,引发了射频(RF)能量收集的显着兴趣。此外,随着无线电力传输(WPT)技术的发展,允许免维护和移动电子设备在没有电池的情况下运行,已经为射频能量采集而推出[1]。

WPT技术和能量采集在无线通信和网络中开辟了新的兴奋的可能性,通过实现能源自给自足,能源自给自足的环境友好的运行,实际上无限的生命周期。 RF比其他能源有很多优点。它不依赖于一天中的时间,不需要暴露于热或风,并且可以在传输源的范围内自由移动。

电子物体的暴露随着人类变得更加贴近电子产品而增长,因此辐射的担忧也增加了。虽然这些电子设备的大多数辐射是无害的,辐射能量没有被利用,因此可以建立能够收获能量的装置[2]。收获无线能量最有希望的方法之一是使用整流器和天线的组合的整流天线(图1)。无线能量可以通过连接到整流电路的天线来收集,整流电路将能量转换成DCpower。整流电路,特别是二极管,主要决定了RF到DC的转换效率,肖特基二极管在广泛应用中似乎是一个很好的候选者[3-7]。

近年来,各种来源(RF波,太阳能,振动,压电等)的能量收集一直是研究界的焦点。无线电充电系统采用射频能量收集方法[8]。参考文献中描述了七级肖特基二极管倍压器。图7示出了对于240dBm的入射信号,100kOhm负载的输出为3mV。参考文献的作者9已经表明,通过实施六级电压倍增器,与GSM电池塔距离10m的距离收获2.78V的电压。而在Ref。 10,来自整流系统的收获能量能够将存储电容器充电到2.8V,并且在没有负载的情况下维持功率。参考文献11,作者调查了使用无源RFID作为唤醒无线电的可行性和潜在的好处。英特尔首先对数字电视(DTV)进行收获,在广播电视台距离4公里的地方收获了60百万分之一的能源[12,13]。参考文献如图9所示,距离基站25 m至100 m的距离,最大可用GSM功率密度级别不超过l mW / m2。

根据作者的最佳知识,没有一篇文献报道了该地区广播频段的能量收集,因此,这项工作提出了一个整流器,其目的是从频率为550 MHz的广播和GSM频段收集能量和900 MHz。除GSM频率外,广播频率的收获能量是探索的一个热点,因为能源在大气中广泛使用。因此,有趣的是调查设计的整流器在两个频率范围内的性能。

该电路被证明可以产生比[7]更多的整流直流电压,具有在双频下工作的添加能力。

图1矩形框图

2.整流器设计

本文提出的整流器是基于图2所示的七阶段的具有肖特基二极管的Villard乘法器。由于其简单性并且由Refs的先前研究人员广泛实施,所以选择该配置。 1,5,7,10和12,因为它产生了良好的整改产出。 每个阶段由两个二极管和两个电容组成。 由于高工作频率和低输入功率,二极管应具有非常快的开关时间和最低可能的导通电压[14-17]。 因此,在该电路中选择HSMS2850肖特基二极管,因为它们具有低导通电压,并且其高检测灵敏度适用于小于220dBm的输入信号。

图2直流电路

图3单级整流器

图4归一化值与步数

图3给出了单级电压整流电路,其中由两个二极管和两个电容组成。在理论上,在该电路中产生的电压大约是输入的两倍。输入电压由D2整流,在正半周期内存储在C2中,C1在负周期从D1存储整流电压。因此,C2将充电达到由D2整流的电压和两个二极管的C1减去导通电压的电压的几乎两倍。

对于RF能量采集,单级整流器通常不足以为系统供电,因为从环境中清除的能量确实是非常低的功率。因此,为了提高其效率并在输出端获得更多的电压,这些电路串联。这些电路的组合使得可以产生大于给定输入的输出。

已知在电路中添加级可以获得比前级更多的电压。在第一乘法器电路之上添加第二级,由于已经接收到的第一级的噪声,将导致电压的增加。然后将该噪声加倍并加到第一级的直流电压。因此,添加的阶段越多,理论上越多的电压将来自系统,无论输入如何。每个独立的阶段,具有专用的倍压电路,可以看作是具有开路输出电压VO和内部电阻RO的电池。当这些电路中的n个串联并连接到RL的负载时,输出电压将由公式(1)[8]。

Vout5

nVo

5Vo

1

(1)

nRo1RL

Ro

1

1

RL

n

从等式 (1)中,我们知道如果V0固定,输出电压Vout由Ro / RL的加法和1 / n决定。 通过假设VO 5 1 V,R 0 / RL 5 0.25,n 52,3,4,5,6和7,并且该值在等式 (1),因此输出电压Vout分别为51.33 V,1.72 V,2.22 V,2.43 V和2.56 V。 从这个分析,输出电压的增加将几乎是输入电压的两倍,达到一些阶段[7]。 在某些时候,所获得的电压可以忽略不计。 这可以通过后续分析来证明。

图4示出了在900MHz处的归一化值对阶段数,其中当阶段数量增加时,其显示输出电压的增量。 对于所提出的电路,阶段号7是最有效的,因为它能够给出输出电压降低超过该阶段的最佳整流电压。 所提出的整流器设计为在550 MHz和900 MHz频率下进行能量采集。 这两个频率都是广播和全球通信系统(GSM)在这个地区,它们在环境中广泛可用。

电路已经在FR-4板(介电常数,r 5 4.6,衬底厚度,t 5 1.6 mm)上制造,以便以低成本解决方案来确定其性能。 电路尺寸为190 mm 3 33 mm(图5)。 然后将该电路的测量结果与先进设计系统(ADS)软件的模拟输出进行比较。

图5 FR-4板上的电路

图6输出电压与输入功率

图7具有不同电容的输出电压

表1输入功率与输出电压的不同组合电容值

Output Voltage (V)

Varies

Varies

Pin (dBm)

4.7 nF

3.3 nF

H to L

L to H

Random

225

0.16

0.15

0.15

0.15

0.15

220

0.40

0.39

0.39

0.39

0.40

215

0.92

0.92

0.91

0.90

0.91

210

1.92

1.92

1.91

1.90

1.90

25

3.76

3.75

3.74

3.72

3.73

0

7.05

7.05

7.03

7.00

7.00

5

12.81

12.80

12.76

12.70

12.73

10

20.58

20.57

20.50

20.50

20.50

图8输出功率与输入功率的关系

图9实验设置

图10模拟和测量结果。 [在线问题可以查看颜色数字,可在wileyonlinelibrary.com获取]

3.结果与讨论

3.1参数分析

在制造最终结构之前,进行参数研究以预先确定设计的整流器的最佳性能。调查参数是关键参数:(1)阶段数; (2)从电容值到电路的影响;和(3)阶段的电容变化。所有的研究都使用高级设计系统(ADS)软件中的谐波平衡(HB)仿真进行。

所提出的整流器的第一个研究参数是用于最佳整流输出电压的整流器的级数。与以前的参考文献相比较。 7,12和14,对于所提出的230dBm到110dBm输入功率的整流器,对最佳级数进行了分析。如图6(a)和6(b)所示,输出随着整流器级数的增加而增加。对于900MHz的模拟,阶数8的输出电压在较低输入功率下低于七级,但在较大输入功率下则较高。高于第8阶段,通过参考第9阶段的输出,产量如图所示恶化。

同时,在550MHz时,如图6(b)所示,电压输出随舞台数增加直到阶段13逐渐增加。但是,将舞台增加到14岁,显着降低整流电路的性能。 这可以在图6(b)中证明,这表明整流器仅仅对输出为10dBm的7.89V的整流输出。 同样可以强调的是,在低输入功率下,输出功率下降到11级和12级,输出功率增加。 因此,对于两个工作频率,选择七级整流器,因为它在较低和较高输入功率下产生最佳结果。

表2拟议整流器整流电压的模拟和测量结果

550 MHz (V)

900 MHz (V)

<!--

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[28434],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。