____________________________________________________
How to Select Amplifiers for Pressure Transmitter Applications
Edward Mullins, Ian Williams, Giuseppe Lo Voi, Raphael Puzio
Introduction
Pressure transmitters are used to monitor weight, level, force and flow in industrial process control systems. The primary challenges encountered when designing pressure transmitters are nonlinearities and temperature dependence. Overcoming these challenges requires the proper implementation of an appropriate operational amplifier (OpAmp) and a deep understanding of, the precision, voltage range, and drive characteristics of the OpAmp.
Pressure Sensors
The four most common types of pressure sensors used in pressure transmitter applications are: Resistive, Capacitive, Silicon, and Linear Variable Differential Transformer (LVDT) with resistive strain gauges being the most commonplace. These four variants all use similar paths in the pressure transmitter signal chain. Figure 1 illustrates a block diagram of a typical pressure transmitter signal path.
Figure 1. Common Pressure Transmitter Block Diagram
Various sensors and interfaces call for diverse device implementations.
- bull; Instrumentation amplifiers, also known as INAs, are used to amplify small differential signals in the presence of larger or noisy common-mode signals bull; Programmable-gain amplifiers, also known as PGAs, can provide higher gain accuracy using selectable gain steps.
- Capacitive, LVDT and silicon sensors require implementation of a driver amplifier, which provides the excitation required for the sensor to capture changes in pressure or displacement.
- Voltage-to-current (V/I) converters are used to interface with commonly used 4-20mA current loops.
Instrumentation Amplifiers
The output signal from the sensing element will require amplification prior to digital conversion as sensor signals are typically very small and can commonly be in the low single millivolt range. Instrumentation amplifiers provide the necessary amplification while ensuring low noise and good rejection of the commonmode signals. The INA828 is an INA, with super-beta input transistors that provide exceptionally low input offset, drift, noise, and optimized CMRR to help maintain signal accuracy when interfacing sensing elements.
Programmable Gain Amplifiers
Sensing elements typically output a nonlinear signal over temperature and pressure changes. A programmable gain amplifier with linearization circuitry, such as the PGA309, can be used to adjust for nonlinearities. The PGA309 is a programmable analog signal conditioner designed specifically for bridge sensors. The output of the PGA309 is sufficient to drive any 5-V analog-to-digital converter (ADC). Any higher-voltage ADC must be buffered by a low-noise, low-offset voltage and low-drift OpAmp to extend the output signal and make use of the ADCrsquo;s full dynamic range. The OPA189 is a good option for a buffer amplifier, given its wide voltage range up to 36V, zerodrift and low-noise (5.8nV/radic;Hz) performance.
Driver Amplifiers
Capacitive-, LVDT- and Silicon-based sensing elements require excitation by an OpAmp with sufficient drive characteristics necessary to enable the sensing element to capture minute changes in pressure and displacement. The important design
SNOA975–March 2018 How to Select Amplifiers for Pressure Transmitter Applications Edward Mullins, Ian 1
Submit Documentation Feedback Williams, Giuseppe Lo Voi, Raphael Puzio
Copyright copy; 2018, Texas Instruments Incorporated
Related Documentation www.ti.com
parameters for these OpAmps are output current and capacitive load drive. The OPA196 OpAmp offers sufficient output current (65mA) and high capacitive load drive (1nF) capability making it a good choice for this application.
Table 1. Devices for Pressure Transmitter
Applications
Device |
Key Benefits |
||||||||||||||||||||||||||||||||
Very low-noise and high CMRR preserves optimum signal accuracy from low-level sensing elements. |
|||||||||||||||||||||||||||||||||
Ultra-low power, high CMRR and zero-drift architecture minimize power consumption and eliminates common mode interference while enabling high accuracy over the full industrial temperature range. |
|||||||||||||||||||||||||||||||||
Maximize design versatility while mitigating pressure and temperature nonlinearities through highly integrated linearization circuit, fault monitoring and digital temperature compensation. |
|||||||||||||||||||||||||||||||||
Very low-noise, ultra-high CMRR and zerodrift architecture maximize signal accuracy and precision. |
|||||||||||||||||||||||||||||||||
High 剩余内容已隐藏,支付完成后下载完整资料
如何为压力变送器应用选择放大器 Edward Mullins, Ian Williams, Giuseppe Lo Voi, Raphael Puzio 介绍压力变送器用于监测工业过程控制系统中的重量,水平,力和流量。 设计压力变送器时遇到的主要挑战是非线性和温度依赖性。 克服这些挑战需要正确实施适当的运算放大器(OpAmp),并深入了解OpAmp的精度,电压范围和驱动特性。 压力传感器压力变送器应用中使用的四种最常见类型的压力传感器是:电阻式,电容式,硅和线性可变差动变压器(LVDT),其中最常见的是电阻式应变仪。 这四种变型都在压力变送器信号链中使用相似的路径。 图1 示出了典型的压力变送器信号路径的框图。
图1.普通压力变送器框图各种传感器和接口需要各种设备实现。
PGA可以使用可选的增益步长提供更高的增益精度。
仪表放大器来自传感元件的输出信号在数字转换之前将需要放大,因为传感器信号通常非常小,并且通常可以处于低单毫伏范围内。 仪表放大器提供必要的放大功能,同时确保低噪声和良好的共模信号抑制能力。 该 INA828 是INA,具有超级beta;输入晶体管,可提供极低的输入失调,漂移,噪声和优化的CMRR,以便在连接感应元件时有助于保持信号的准确性。 可编程增益放大器感测元件通常在温度和压力变化时输出非线性信号。 具有线性化电路的可编程增益放大器,例如 PGA309,可以用来调整非线性。 该 PGA309 是专门为桥式传感器设计的可编程模拟信号调理器。 的输出 PGA309 足以驱动任何5 V模数转换器(ADC)。 任何更高电压的ADC必须通过低噪声,低失调电压和低漂移OpAmp进行缓冲,以扩展输出信号并充分利用ADC的全部动态范围。 该 OPA189 由于其宽电压范围高达36V,零漂移和低噪声(5.8nV /radic;Hz)性能,因此是缓冲放大器的理想选择。 驱动放大器基于电容,LVDT和硅的传感元件需要OpAmp进行激励,并具有足够的驱动特性,以使传感元件能够捕获压力和位移的微小变化。 重要的设计 SNOA975 - 2018年3月 如何为压力变送器应用选择放大器爱德华马林斯伊恩 1 威廉姆斯,朱塞佩卢沃伊,拉斐尔普齐奥 版权所有copy;2018,德州仪器 相关文档 www.ti.com 这些OpAmp的参数是输出电流和容性负载驱动。 该 OPA196 OpAmp提供足够的输出电流(65mA)和高容性 加载驱动器(1nF)功能使其成为此应用的理想选择。 表1.压力变送器应用设备
电压至电流转换器压力变送器应用中的通用接口是4-20mA电流回路,它使用精密的低功耗OpAmp在电压范围内创建可测量的电流范围。 OpAmp在这个应用中的要求是低功耗和高精度。 该 OPA187,一个新的 零漂移 OpAmp具有10mu;V的最大偏移和100mu;A/通道静态电流,因此非常适合这种要求。 一个集成的解决方案也可以使用一个 XTR115, XTR300, 要么 XTR305,它们是高精度电流输出转换器,旨在提供低电平信号的信号调理并将其转换为强大的无噪声4-20mA传输。 温度,功率和非线性在实际应用环境中,温度的变化会影响关键器件规格的性能,例如输入失调电压和输入偏置电流。 这种影响可以通过选择来缓解 零漂移 运放。 对于功率受限的应用(如电池供电的传感器或具有多个传感器节点的420mA环路),可提供保持高精度的低功耗设备。 传感器输出压力或温度的非线性可以通过调整传感器的激励来校正。 该功能可以通过数字处理或集成线性化电路来实现。 概要压力变送器中放大器的实现将根据传感元件和接口而变化。 通过正确使用仪表放大器,可编程增益放大器和运算放大器,可以缓解宽温漂和非线性问题。 表2 概述了压力和现场变送器应用中常用的一些设备。 表2.相关文章和资源
版权所有copy;2018,德州仪器 SNOA975 - 2018年3月 TI设计信息和资源的重要通知德州仪器(TI)技术,应用或其他设计建议,服务或信息(包括但不限于与评估模块相关的参考设计和材料(统称“TI资源”))旨在帮助设计人员正在开发集成TI产品的应用程序; 通过以任何方式下载,访问或使用任何特定的TI资源,您(单独或如果您代表公司行事您的公司)同意仅将其用于此目的并受本通知条款约束。 TI提供的TI资源不会扩展或以其他方式更改TI针对TI产品的适用已发布的保证声明或担保免责声明,也不会因TI提供此类TI资源而产生额外义务或责任。 TI保留对其TI资源进行更正,增强,改进和其他更改的权利。 您理解并同意,在设计您的应用程序时,您仍然有责任使用独立分析,评估和判断,并且您有责任确保您的应用程序的安全性和应用程序的合规性(以及所有TI产品为您的应用程序)与所有适用的法规,法律和其他适用的要求。 您表示,就您的应用而言,您拥有所有必要的专业 剩余内容已隐藏,支付完成后下载完整资料 资料编号:[24423],资料为PDF文档或Word文档,PDF文档可免费转换为Word |
课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。