Marine Heavy Transport amp; Lift, London, UK
A NEW APPROACH TO CMTEBIA FOJR MEAWWIFT TRAI-TSPORTATIOrT
J M. BlmgwpJl, S L Free, H ID) Lawes, ill Lloyd, M J Palmer said J LidePalgP, Noble Denton Europe Ltd, UN SUMMARY
Purpose-built Heavy Transport Vessels have existed for many years. Modem vessels have greater capacity, and give better protection to sensitive cargoes. Greater power, manoeuvrability and propulsion system redundancy are contributors.
Many cargoes are designed with the end use in mind. They are often built, for commercial reasons, many thousands of miles from their destination. Transportation is sometimes not fully considered in the initial design. To maximise As potential of these vessels, a new approach was needed to the transportation design criteria.
Previous practice was to design for the worst case scenario, to assume that the vessel would encounter the extreme storm, and would be incapacitated in that storm. This is a prudent approach for towages, which have insufficient speed to avoid or outrun a storm. The ability of modem vessels to avoid severe weather, combined with current meteorology and communications, significantly lowers the risk. Conversely, reduced design criteria for structures and seafastenings can be allowed. If combined with careful voyage planning and procedures, this offers cost savings whilst still maintaining an acceptable level of risk. Some voyages can be achieved which would not have been considered possible a few years ago.
The paper will describe the latest criteria, and will illustrate their use with a case study of a significant transport.
lo INTRODUCTION
The world-wide fleet of heavy life ships is a unique section of the shipping market for which there are no specific statutory design rules in place.
Various marine organisations have had marine transportation criteria for many years. The context of this paper is primarily oil-field related transportations.
Towages on their own buoyancy of, for instance, mobile drilling rigs and offshore platforms were slow and cumbersome, and the towed objects could be exposed to the foil force of the elements. Slow speed meant there was little opportunity to deviate round predicted bad weather. The structures themselves were vulnerable to wave motions and wave action, and were frequently prone to fatigue damage. The probability of a totally successful transportation, with zero damage, was sometimes unacceptably low.
Barge transportation solved some of the problems, once the equipment was available to load and discharge very large objects. The cargoes were transported higher above the wave action, and a barge towage is generally faster, giving slightly increased flexibility.
The advent of submersible heavy-lift transport vessels enabled cargoes that were previously transported on barges to be shipped. Some of the early vessels were essentially powered barges (rather low-powered at that), and some of them also relied on a tug as well as their own power.
It was realised that gains could be made by exploiting the speed and manoeuvrability of fully self-propelled vessels. If ike voyage could proceed much faster than a towed
barge, the risk of encountering severe weather, even with no special precautions, is proportionately reduced. Add modem weather forecasting techniques, modem communications, and the ability of a fast vessel to outran or deviate round bad weather, then both risks and costs can be further reduced.
The Noble Denton organisation acts as consultants, as designers and as Marine Warranty Surveyors. It became apparent that in whatever role we are employed, there was a need for consistent and up-to-date transportation criteria.
Previously, Noble Dentons criteria for marine transportation was written on an as-needed basis, and could be found in a variety of guideline documents. One was aimed primarily at barge transports, one at self- propelled vessels, and one at jack-up drilling rigs. In late 2003 a re-drafting exercise was begun to reflect the new technologies. There was common ground between the various documents, which would be better in one place. Therefore they were amalgamated into one document entitled “General guidelines for marine transportations' , first issued in 2004, and revised twice since then [1]. Our aim is to keep the document “live', and incorporate new sections as more experience is gained.
Transportation on ships and submersible heavy lift vessels is the prime concern of this paper. The document [1] also offers guidelines on:
o transportation of cargoes on towed barges o towage of ships, including demolition towages o towages of self-floating marine and oilfield equipment
o one-off towages of self-floating cfoi! engineering structures
copy; 2005: The Royal Institution of Naval Architects
97
Marine Heavy Transport Si Lift, London, UK
It should be emphasised that 'standard” cargoes are
excluded - the document is primarily aimed at specialised cargoes, mostly oil-industry related.
For each type of transportation, the dociiiiient [1] gives guidance, as relevant, on:
o required documentation
o design environmental conditions o motion response, loadings, design and strength o stability
o transport vessel selection o tug selection o towing equipment o voyage planning and departure o pumping and sounding o emergency anchors and mooring arrangements o manning of tows and transportations o multiple towages
^ There are special considerations' sections covering;
“ transport of jack-ups - towage of ships and FPSOs = towages in ice-covered waters
This paper discusses how allowances have been made for new technology. It is considered unreasonable, for instance, to apply the same criteria to a single tug barge towage capable of 6 knots, a single screw ship capable of 11 knots, and a ship capable of 14 knots
剩余内容已隐藏,支付完成后下载完整资料
摘要
特制的重型运输机械已经存在多年。现代出现的重型运输船舶都比以往的机械具有更大的运输提升能力,并且可以对某些特殊敏感的货物提供更好的保护。随着时间的推移,科技水平不断向前发展,追求更大的可用功率,更强的可操作性能和去除系统冗余力求操作灵敏简单是现代重型运输器械快速发展的大方向,也正是有总体发展方向的指引,现代重型运输器械才能取得如今的成就。
许多产品都是根据其最终用途而进行设计的。出于商业原因,这些产品的出现往往对其他相关行业的发展具有里程碑式的重要意义。但是有时产品在初始设计中可能会没有充分考虑运输的影响。为了最大限度地发挥这些运输工具的潜力,必须充分考虑到运输在其中的影响作用,这就需要一种新的交通设计标准的方法。
以前的做法是设计为最极限的情况,假设运输器械遇到极端情况,并且在该情况下运输器械没有任何行动能力。就拿拖船来说,当重载船舶遇到非常极端的天气时,拖船可以避免或逃离暴风雨涉及的范围,这是一种非常明智的做法。现代船只为了避免严重的风暴,都具有检测设备,可以结合当前的气象和通信做出相应的判断,这可以显着降低遇险概率。相反,减少结构和海员的设计标准也是可以被允许的。如果可以结合事先缜密规划的航行规划和程序,可以同时保持可接受的风险水平,这就可以大大的节省成本开销。很多年前觉得不可能实现的产品伴随着现代工业大发展都已将变成了现实。
本文将描述最新的标准,并将说明它们的用途与重大运输的案例研究。
目录
第一章 绪论
世界范围的重型船舶是航运市场的一个独特部分,没有具体的法定设计规则。
各种海洋组织多年前就已经有海洋运输标准。本文的上下文主要是油田相关的运输。
例如,移动式钻机和海上平台依靠自身浮力进行拖曳非常缓慢并且操作冗杂,同时在元件的箔力的作用下,拖曳的物体可能暴露于水面上。慢速意味着有很少的机会偏离事先预测的恶劣天气。结构本身易受波浪运动和波浪作用,并且易于疲劳损伤。完全成功的运输,即损害为零的的运输,这种运输的成功概率非常低,有时低到令人难以接受。
驳船运输解决了一些问题,一旦设备可用于装载和卸载非常大的物体。货物在波浪作用下被运输得更高,并且驳船拖航通常速度更快,这使得运输的灵活性得到了增加。
潜水重型运输船的出现使得先前在驳船上运输的货物能够被运输。一些早期的船只本质上是动力驳船(相当低功率),其中一些还依赖于拖船和自己的力量。
人们意识到,通过利用全自动推进船只的速度和机动性可以获得收益。如果航行速度可以比拖船速度更快,即使没有特别预防措施,遭遇恶劣天气的风险也会成比例地减少。添加现代天气预报技术,调制解调器通信,船舶具有快速超越或偏离恶劣天气的能力,那么可以进一步降低风险和成本。
Noble Denton组织担任顾问,设计师和海事保修测量师。显而易见的是,无论我们担任任何角色,担负任何职责,都需要一致和最新的交通标准。
以前,Noble Denton的海上运输标准是根据需要编写的,可以在各种指南性质的文件中找到。一个主要针对驳船运输,一个主要针对自走式船只,另一个在自升式钻机。在2003年底,海上运输标准开始了重新起草工作,以实时反映新兴的科学技术。在各种文件之间有一些共同点,这在一个地方更好的体现了出来。 因此,它们被合并成一份题为“海洋运输通用指南”的文件,首次于2004年发布,自那以后修订了两次。我们的目标是保持文件“活性”,并纳入更多已经获得的经验。
船舶和潜水重型起重船的运输是本文的首要关注点。文件还提供了有关以下方面的指导:
- 拖曳驳船上的货物运输;
- 船舶拖曳,包括拆卸拖船;
- 自浮式海运和油田设备拖曳;
- 自浮式土木工程结构的一次性拖船;
应该强调的是不包括“标准”货物,该文件主要针对专门货物,主要是石油工业相关的货物。
对于每种类型的运输,代理人在相关的情况下给出以下指导:
- 所需文件;
- 设计环境条件;
- 运动反应,负荷,设计和强度;
- 稳定性;
- 运输船舶选择拖轮选择;
- 牵引设备;
- 航行规划和离开;
- 泵送和探测;
- 紧急锚和系泊装置;
- 拖车和运输的管理;
- 多个拖船等。
这里特别考虑的部分包括:
运输自升式;拖船和FPSO以及在冰覆盖的水域的拖船。
本文讨论了如何为新技术制定允许机制。例如,对于6节的单个拖船驳船拖曳和对于11节的单螺杆船,以及具有多余推进力的14节的船应用相同的标准,这是非常不合理的。显而易见,后者船舶通过减少航行时间,设计货物种类限制,降低海员工资和保险费用成本以降低整个船舶的附加费用。
本文讨论了运输设计过程,包括气象,交通设计以及航次规划和程序。显然,任何船舶在任何方向上,偏离原本运输规定设计的基本标准,都将需要仔细分析和明确定义航行程序,深入理解其相关限制。在所有有关规定方面,包括船长在内,都必须同意设计过程和最终程序。
下面将会给出具体运输的例子,在该例中成功地使用了上文所阐述的原理,对读者理解全文内容有重要意义。
第二章 气象海洋
2.1 十年回顾
海洋运输要素的设计所考虑的环境条件是10年回风周期的风速和波浪高度。10年回报期的选择是运输设计的最常见的做法,并且是IMO海事指导方针中的要求,其中一些运营商优选的替代设计标准包括5%和10%的风险水平。
如果是没有确定出发日期的拟议运输,则应该设计成能够承受可能会通过的海域的10年风暴最恶劣的状况。如果可以获得出发日期的估计日期或者日期范围,则可以通过使用10年风暴的月极值来考虑在季节变换条件下10年风暴相应的变化。这些数值定义为在相关月份期间平均每10年可能达到或超过一次的风速和波高。
2.2 降低接触和风险级别
特定运输工具遇到极端条件的风险,取决于其在极端天气可能出现的路线区段中花费的时间长度。
超过极值的概率(例如,给定月份中的10年极限)被计算为这些月中总事件数目为10时可能事件数的倒数。因此,如果运输需要一个月,并且其通过的区域气候有均匀的风速和波浪,则超过10年每月极限的概率为1/10(每10次运输一次),但是,如果运输时间短于一个月,或者在不到一个月的时间内通过最恶劣条件的所在区域,那么超过10年月度极值的概率就会减少。例如:
15天暴露 - 概率是1/20
3天暴露 - 概率是1/100(大约)
这说明如果10年极限用于所有的海洋运输,安全水平将有所不同。为了使安全水平保持一致,可以调整10年极限,以减少暴露于最坏天气的情况。此调整值对应于10%的风险级别。
2.3 计算运输设计标准
非飓风极值是从沿线路区域可用数据源的极值分析计算得出的。检查所有极端是否与每个区域中的任何已发布极值保持一致性。
为了计算风和波浪设计标准,极端或极端条件下的潜在暴露时间计算如下:
(1)该路线按照其计算10年的极值被分成多个扇形区域。任何极值在最差扇区10%以内的扇区都包括在曝光计算中。在定义严重的部分的相关实验中发现了这种情况下问题的严重程度,从而有助于实现确定最终设计值的实际风险值。
(2)如果采取可靠的离港天气预报和建议,可以排除在最初72小时内暴露于极端天气的任何可能性。
(3)通过考虑沿着路线的典型海岸和不利水流的影响来降低运输的速度。
(4)偶然性,通常添加25%的时间。这种时间补偿是为了以防机械出现破裂或其他偶然的困难情况。
(5)如果最终目的地在海上并暴露于可能的极端情况,则暴露时间被扩展为包括适当的卸载或安装操作的现场等待时间。
(6)考虑最少暴露3天
当路线经过可能发生极端或接近极端的几个不同区域时,每个区域的概率分布与给出航行的最终设计极限在该区域中花费的时间成比例,具有超过0.1的概率。
该值被称为运输的“调整”极值,或者具有10%的风险水平的极值,同时该方法还可以用于给出其他风险水平,例如1%或5%。
2.4 热带气旋考虑
一般来说,热带气旋在任何一个地点都很少见,但是当它们发生时,有可能带来可能造成毁灭性的风和波浪。
在运行速度低于12海里的情况下,设计标准低于10年的热带气旋极端通常是不可接受的,因为不可能保证避免这种风暴,并且存在可能大大超过设计标准的风险 。
对于12节或更高的重型起重船上的运输,在平静天气情况下运行速度降低到低于10年设计标准的热带气旋极限可能是可接受的,此设计标准是基于可以避免热带气旋的假设。
2.5 替代方法
运输模拟方法是用于在单个运输中具有超过指定的风险的标准的替代方法。该方法需要航行沿线整个路线的风速和波浪的大量以时间为序列的数据。大量的运输模拟可以在整个数据库期间的指定月份运行,从中可以提取在每次航行中遇到的最高风速和波高,然后就可以使用这
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[140085],资料为PDF文档或Word文档,PDF文档可免费转换为Word
课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。