酸性和碱性条件下顺式-蒎酮酸与羟基自由基液相氧化的动力学和机理外文翻译资料

 2022-12-24 16:05:14

Article

pubs.acs.org/est

cis-Pinonic Acid Oxidation by Hydroxyl Radicals in the Aqueous Phase under Acidic and Basic Conditions: Kinetics and Mechanism

Bartłomiej Witkowski* and Tomasz Gierczak

̇

University of Warsaw, Faculty of Chemistry, Al. Zwirki i Wigury 101, 02-089 Warsaw, Poland

*S Supporting Information

ABSTRACT: Aqueous-phase oxidation of cis-pinonic acid (CPA) by hydroxyl radicals (OH) was studied using a relative rate technique under acidic and basic conditions. Liquid chromatography (LC) coupled to the negative electrospray ionization (ESI) quadrupole tandem mass spectrometry (MS/ MS) was used to monitor the concentrations of CPA and reference compounds. The measured second order reaction rate coefficients of CPA with OH were: 3.6 plusmn; 0.3 times; 109 Mminus;1 sminus;1 (pH 2) and 3.0 plusmn; 0.3 times; 109 M minus;1 sminus;1 (pH 10) - combined uncertainties are 2sigma;. These results indicated that the lifetimes of CPA in the atmosphere are most likely independent from the aqueous-phase pH. LC-ESI/MS/MS was also used to tentatively identify the CPA oxidation products. Formation of

carboxylic acids with molecular weight (MW) 216 Da (most likely C10H16O5) and MW 214 Da (C10H14O5) was confirmed with LC-ESI/MS/MS. When the initial CPA concentration was increased from 0.3 to 10 mM, formation of additional products was observed with MW 188, 200, 204, and 232 Da. Hydroperoxy, hydroxyl and carbonyl-substituted CPA derivatives were tentatively identified among the products. Similar products were formed by the CPA oxidation by OH in the gas-phase, at the airminus;water interface as well as in the solid phase (dry film). Formation of the stable adduct of CPA and H2O2 was also observed when the reaction mixture was evaporated to dryness and redissolved in water. Acquired mass spectrometric data argues against formation of oligomers.

1. INTRODUCTION

SOA (secondary organic aerosol) formation following the gas-phase monoterpene oxidation is a globally occurring phenom-ena that was studied extensively.1 SOA is produced in the gas-phase when semivolatile oxidation products of the volatile organic compounds (VOC), mainly biogenic VOC (BVOC), nucleate or condense onto preexisting particles (the partition-ing theory).2,3 However, the current predictions of the global SOA budget are still largely unsuccessful.1,4minus;7 The large discrepancies between bottom-up estimated of the global aerosols budget and the field observations are due, in part, to

our limited understanding of the processes leading to SOA formation.1,4minus;7

Recently, it was proposed that organic compounds processing in clouds, fogs and wet aerosols may lead to SOA formation in the aqueous-phase (aqSOA).4,6,8minus;11 When semivolatile precursors are oxidized in the aqueous-phase, the low-volatility products can form particles after solvent is evaporated.12 Multiphase processes are also partially respon-sible for the chemical aging of oligomers detected in monoterpene SOA particles.13 Consequently, the currently poorly characterized aqueous-phase processes are becoming the

emerging topic of interest in the field of atmospheric chemistry.9,13minus;15

Gas-phase oxidation of alpha;-pinene by hydroxyl radicals (OH), tropospheric ozone (O3) and nitrate radicals (NO3) is a well recognized source of SOA.16,17 Cis-pinonic acid (CPA) is one of the major alpha;-pinene oxidation products and it is often present in the ambient particles.18 The field observations are in a good agreement with the predicted partitioning of CPA under realistic atmospheric conditions.9,19 It was concluded that about 50% of CPA should partition into the particle phase assuming 5 mu;g mminus;3 of organic mass loading at 296 K.19 The predicted CPA Henryrsquo;s Law constant (H) asymp; 2 times; 107 M atmminus;114,20 is also comparable with the effective H of the isoprene oxidation products that have received much study as the aqSOA precursors.11,21,22 Consequently, CPA will be mostly present

in the aqueous phase under humid conditions, for example, in clouds.9,20

Results of the field measurements also indicate that CPA is subjected to a chemical degradation during summer.9,23 According to the most recent estimates, the aqueous-phase oxidation by OH is a dominant removal mechanism of CPA in clouds (assuming liquid water content, LWC - of 0.3minus;0.5 g

Received: May 11, 2017

Revised: July 10, 2017

Accepted: July 18, 2017

Published: July 18, 2017

copy; 2017 American Chemical Society

9765

DOI: 10.1021/acs.est.7b02427

Environ. Sci. Technol. 2017, 51, 9765minus;9773

Environmental Science amp; Technology Article

mminus;3).9,20 SOA yield from CPA oxidation by OH is between 40 and 60% in the aqueous-phase9 and only about 6% in the gas phase.24 The aqueous-phase processing of CPA is therefore an important source of SOA.9,14,19,20 The reaction of CPA with OH radicals:

is here of primary importance.

Very recently, a kinetic report describing experiments for the reaction 1 in the liquid phase was published.9 Online chemical ionization mass spectrometry (CIMS) was utilized to study reaction 1 kinetics in the aqueous phase under acidic conditions (pH 2).9 The pH of water-containing particles in the atmosphere ranges from 1 to 9.10,25 In cloudwater (pH 4

剩余内容已隐藏,支付完成后下载完整资料


酸性和碱性条件下顺式-蒎酮酸与羟基自由基液相氧化的动力学和机理

Bartłomiej Witkowski and Tomasz Gierczak

̇

University of Warsaw, Faculty of Chemistry, Al. Zwirki i Wigury 101, 02-089 Warsaw, Poland

摘要:在酸性和碱性条件下,使用相对速率技术研究羟基自由基(OH)的顺式 —蒎酮酸(CPA)的液相氧化。使用与负电喷雾电离(ESI)四极串联质谱(MS / MS)偶联的液相色谱(LC)来监测CPA和参比化合物的浓度。 CPA与OH测得的二级反应速率系数分别为:3.6plusmn;0.3times;109 M-1 s-1(pH2)和3.0plusmn;0.3times;109 M -1 s-1(pH10)组合不确定度为2sigma;。这些结果表明,CPA在大气中的寿命很可能与液相pH无关。 LC-ESI / MS / MS也用于初步鉴定CPA氧化产物。用LC-ESI / MS / MS证实形成分子量(MW)216Da(最可能是C 10 H 16 O 5)和MW 214 Da(C 10 H 14 O 5)的羧酸。当初始CPA浓度从0.3mM增加到10mM时,观察到MW 188,200,204和232Da的附加产物的形成。在产品中初步鉴定氢过氧,羟基和羰基取代的CPA衍生物。在气相,空气 - 水界面以及固相(干膜)中,通过OH的CPA氧化形成类似的产物。当反应混合物蒸发至干燥并再溶解于水中时,还观察到CPA与H2O2氧化生成了较为稳定的产物。获得的质谱数据没有观察到低聚物的形成。

1.引言

气相单萜氧化后形成SOA(二次有机气溶胶)是一种全球性的现象,并得到了广泛的研究。[1]当挥发性有机化合物(VOC)的半挥发性氧化产物,主要是生物成因VOC(BVOC)在预先存在的颗粒上成核或凝聚(分配理论)时,SOA会在气相中产生。[2,3 ]然而,目前对全球SOA的预测仍然很不成功。[1,4-7]自下而上的全球气溶胶估测与实地观测之间的巨大差异一部分是由于我们对SOA形成的过程的理解有限导致的。[1,4-7]

最近有人提出,在云层,雾和湿气溶胶中处理有机化合物可能导致液相中形成SOA(aqSOA)。[4,6,8-11] 当半挥发性前体物在液相中被氧化时,低挥发性产物可在溶剂蒸发后形成颗粒。在单萜SOA颗粒中检测到的低聚物的化学老化也是多相过程的一部分。 因此,目前表征较差的液相过程正慢慢成为大气化学领域中兴起的新兴课题。[9,13-15]

由羟基自由基(OH),对流层臭氧(O3)和硝酸根(NO3)气相氧化alpha;-蒎烯是公认的SOA来源。顺式—蒎酮酸(CPA)是主要的alpha;—蒎烯氧化产物之一,通常存在于环境颗粒中。实地观察与实际大气条件下预测的CPA划分非常吻合。得出的结论是,假定在296K下有机质量负荷为5mu;gm-3,约50%的CPA应该分配到颗粒相中。预测的CPA亨利定律常数(H)asymp;2times;107 M atm-1[14,20]也可与异戊二烯氧化产物的有效H相媲美,这些产物作为aqSOA前体得到了大量研究。[11,21,22]因此,CPA将主要存在于潮湿条件下的液相中,例如在云中。

外场观测的结果还表明CPA在夏季会被化学降解。[9,23]根据最近的估计,OH的液相氧化是CPA在云中的主要去除机制(假定液态水含量LWC 0.3-0.5克mminus;3)。[9,20]

由CPA氧化OH得到的SOA产率在液相中为40-60%,而在气相中仅为约6%。[24]因此,CPA的液相进程是SOA的重要来源。[9,14,19,20]CPA与OH的反应:

这是最重要的。

最近,一篇描述液相反应1的实验的动力学报告发表。[9]

利用在线化学电离质谱(CIMS)研究酸性条件下(pH 2)液相中的反应。[9]含水颗粒在大气中的pH范围为1至9。10,25在云水(pH4-5)中,CPA(pKaasymp;4.82)[26]可以以游离(A-)和质子化形式(AH)存在。因此,在碱性和酸性条件下研究反应1动力学是重要的。[27]

这项工作的目的是测量酸性和碱性环境下反应1的速率系数。为此目的,使用相对速率技术(RR),同样还研究了反应1的机制。这里使用了与电喷雾电离质谱(LC-ESI / MS)相结合的液相色谱,这是一种分析技术。[1,28]在质谱分析之前通过LC分析分离对于反应产物鉴定特别有用。目前可用的文献资料表明,反应1的产物是CPA的高度氧化衍生物,但不可能检测到单个异构体[9,14]

2.实验细节

2.1.相对速率法和OH率系数的确定。使用相对速率技术在300plusmn;2K下测量反应1的速率系数。反应1的速率系数是通过用公知的OH速率系数监测CPA和参比化合物(反应2)的相对损失来获得的。[9,29,30]

OH 参比物→产物(2)

对于使用RR技术的未知速率系数测定,在相同的反应容器中将感兴趣的化合物与参比化合物混合。[9,29,30]假设CPA和参比化合物仅仅由于与液相中的OH反应而丢失,反应1的速率系数可以使用方程1计算。

[顺式—蒎酮酸]和[相关反应物]是CPA和参考化合物在反应前的浓度(时间= 0)和在实验期间(时间= t)。 (kOH = 6.9plusmn;0.7times;109M-1s-1),辛二酸(kOH = 4.8plusmn;0.4times;109M-1s-1)和庚二酸(kOH = 3.5plusmn;0.4times;109M- 1s-1)在酸性pH条件下,以及4-氯苯甲酸(kOH = 5plusmn;0.5times;10 9 M -1 s -1),对甲苯甲酸(kOH = 8plusmn;0.8times;10 9 M -1 s -1)和苯丙氨酸(kOH = 9plusmn;1times;109 M-1 s-1)在碱性条件下作为参考化合物来测量反应速率系数。[31]

实验装置(参见支持信息SI中的图S1)由150mL Pyrex玻璃容器组成。该反应混合物不断地用磁力搅拌器混合。 OH自由基由过氧化氢(H 2 O 2)光解原位产生。使用UVAHAND 250 GS H1 / BL灯(Honle UV技术,310瓦)照射反应混合物。这种灯发出广泛的紫外可见光谱,最短的紫外辐射波长(lt;300nm)被光反应器的派热克斯玻璃壁滤出,使用风扇使光反应器温度保持恒定。[9]温度约为300plusmn;2 K;光反应器内部的温度升高很可能是由于高功率灯的辐照。

对于动力学研究,将100mL水,100mu;LH 2 O 2和ca.将0.5mg的CPA和参比化合物混合。因此,反应物浓度约为 10 mM的H2O2和约30mu;M的CPA和参考化合物。没有反应物时的OH浓度是约 5times;10-12M,这个值是通过使用盒模型的模拟获得的(参见SI中的S1部分)。[32,33]上述反应条件被认为是与大气相关并且以前使用过的。HCl或NaOH被加入反应混合物直至达到所需的pH值--在每次实验前用pH计检查溶液的pH值。[9,34]对于反应1产物鉴定,CPA浓度为0.3,1,2,5和10mM,并且相应地增加H 2 O 2浓度以评估初始前体浓度是否对产物分布有任何影响。每次光氧化实验后,反应溶液也蒸发至干燥并重新溶解在相同量的水中以检查任何非自由基反应。

通过在不同的时间间隔对来自反应器的溶液(100mu;L)进行取样来监测反应进程,并且总反应时间为2.5—4小时—关于取样程序的更详细描述参见SI的第S2页。将反应液等分试样与等体积的过氧化氢酶溶液(asymp;0.1mg/ mL)混合以中和残留的H 2 O 2。将过氧化氢酶溶于50mM乙酸铵缓冲液(pH7或5)中以中和反应混合物的pH,维持酶活性并避免损坏C18固定相,因为大多数C18柱在2-8。[32]的pH范围内操作。样品为在干燥的加热块中在25℃与酶一起温育约15分钟。之后,加入50mu;LACN,通过PTFE注射器过滤器(0.2mu;m孔径)过滤溶液并进行色谱分析(第2.2节)。

2.2. HPLC / MS分析。使用与QTRAP 3200(AB Sciex)三重四极质谱仪偶联的LC20A液相色谱仪(Shimadzu)进行HPLC

图1.在酸性和碱性条件下测量水性反应1的OH反应相对数据; 符号是实验数据,直线符合实验数据

/ MS实验。使用保持在30℃的反相Luna(Phenomenex)C18柱(100mmtimes;2.1mm,3mu;m,100)进行分离。该色谱柱配有带2 mm ID C18预柱的保安盒。洗脱液A为甲酸水溶液(pH2.8),洗脱液B为乙腈(ACN),流动相以0.2mL / min的流速输送;注射量为5mu;L。在质量范围为50-700m / z的总离子流(TIC),选择的反应监测(SRM)模式和MS2模式下获得质谱(负离子模式)。在MS2模式下,选择的前体离子受到碰撞诱导解离(CID)。 ESI条件如下:毛细管电压为-4.5kV,源温度为450℃,氮气用作帘式气体(3times;105Pa),辅助气体(3times;105Pa)和碰撞气体。在SRM模式下监测分析物浓度,并针对每个Q1 / Q3跃迁优化单个离子透镜电压。选择的反应监测(SRM)模式条件通过使用Harvard设备泵以10mu;L/ min的流速将分析物溶液直接引入质谱仪离子源中进行优化。

表1.在酸性和碱性条件下,在顺式 - 蒎烯酸的液相中OH反应速率系数

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[24794],资料为PDF文档或Word文档,PDF文档可免费转换为Word

reference compound

pH

R2

k1/kref

kref times; (109 Mminus;1 sminus;1)

calculated k1a

caffeine

2

0.994

0.54

plusmn; 0.02

6.9

plusmn; 0.7

3.7

plusmn; 0.3

suberic acid

0.996

0.74

plusmn; 0.02

4.8

plusmn; 0.4

3.6

plusmn; 0.3

pimelic acid

0.997

1.01

plusmn; 0.02

3.5

plusmn; 0.4

3.5

plusmn; 0.3

4-chlorobenzoic acid

10

0.996

0.61

plusmn; 0.01

5

plusmn; 0.5

3.0

plusmn; 0.3

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、外文翻译、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。